
UNIVERSITY OF CALIFORNIA,
IRVINE

Security and Privacy Challenges in Content-Centric Networks

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Christopher A. Wood

Dissertation Committee:
Professor Gene Tsudik, Chair

Professor Marco Levorato
Doctor Ersin Uzun

2017

Portion of Chapter 4 c© 2014 IEEE, reprinted, with permission, from [331]
Portion of Chapter 4 c© 2016 IFIP, reprinted, with permission, from [144]

Portion of Chapter 4 c© 2015 ACM, Inc., reprinted, with permission, from [141]
Portion of Chapter 5 c© 2016 ACM, Inc., reprinted, with permission, from [146]
Portion of Chapter 5 c© 2017 ACM, Inc., reprinted, with permission, from [148]

Portion of Chapter 5 c© 2016 IEEE, reprinted, with permission, from [309]
Portion of Chapter 5 c© 2016 IEEE, reprinted, with permission, from [246]
Portion of Chapter 5 c© 2017 IFIP, reprinted, with permission, from [330]
Portion of Chapter 6 c© 2017 IEEE, reprinted, with permission, from [143]
Portion of Chapter 6 c© 2017 IEEE, reprinted, with permission, from [147]

Portion of Chapter 6 c© 2016 ACM, Inc., reprinted, with permission, from [145]
All other materials c© 2017 Christopher A. Wood

This material is based upon work supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE-1321846

DEDICATION

To Kaitlin.
What a plunge.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

LIST OF ALGORITHMS ix

ACKNOWLEDGMENTS x

CURRICULUM VITAE xi

ABSTRACT xv

1 Introduction 1
1.1 The Internet and Modern Network Stacks 3

2 Next-Generation Networks 7
2.1 Future Internet Architecture Candidates . 8

2.1.1 eXpressive Internet Architecture . 8
2.1.2 MobilityFirst . 10
2.1.3 Nebula . 12

2.2 Information-Centric Networking . 15
2.2.1 Data-Oriented (and Beyond) Network Architecture 16
2.2.2 Network of Information . 19
2.2.3 ICEMAN . 21
2.2.4 PURSUIT . 22

3 Content-Centric Networking 25
3.1 Overview . 25
3.2 Forwarding and Matching Semantics . 27
3.3 Messages and Packet Formats . 29
3.4 Named Data Networking Differences . 31
3.5 Security and Privacy Problems . 32

3.5.1 Content Poisoning . 32
3.5.2 Access Control . 33
3.5.3 Privacy . 33
3.5.4 Denial of Service . 34

iii

4 Access Control 36
4.1 Content-Based Access Control . 42

4.1.1 Proxy Re-Encryption Overview . 42
4.1.2 PRE-AC System Design . 46
4.1.3 PRE-AC Protection . 47
4.1.4 Prototype Implementation . 52

4.2 Interest-Based Access Control . 53
4.2.1 Threat Model . 55
4.2.2 Name Obfuscation Variants . 57
4.2.3 Security Considerations . 61
4.2.4 Analysis and Evaluation . 71

4.3 Best Effort Autonomous Deletion in CCN 75
4.3.1 BEAD Requirements . 76
4.3.2 Authenticating Deletion Requests . 77
4.3.3 Routing Deletion Requests . 78
4.3.4 BEAD Analysis . 84
4.3.5 Performance Assessment . 89
4.3.6 Enabling Content Deletion . 93

5 Privacy 95
5.1 Data Privacy Challenges . 102

5.1.1 Data Privacy Pitfalls . 103
5.1.2 Eavesdropping Adversaries . 111
5.1.3 On-Path Honest-but-Curious Adversaries 118
5.1.4 Privacy in Practice . 118
5.1.5 Privacy and Auxiliary Information 123

5.2 Static Content and Frequency Analysis Attacks 127
5.2.1 Threat Model . 128
5.2.2 Frequency Analysis Attack Overview 131
5.2.3 Simulation Methodology . 133
5.2.4 Global Eavesdropping Adversaries . 136
5.2.5 Distributed Eavesdropping Adversaries 138
5.2.6 Probing Popularity Inference . 141
5.2.7 Attack Ramifications . 145

5.3 AC3N: Efficient Anonymous Communication 148
5.3.1 Anonymity Overview and Threat Model 149
5.3.2 System Design . 155
5.3.3 Performance Assessment . 159
5.3.4 Security and Correctness Analysis . 164

5.4 CCVPN: Namespace Tunnels . 168
5.4.1 System Design . 169
5.4.2 Threat Model and Analysis . 174
5.4.3 Performance Assessment . 178
5.4.4 Implementation and Performance Assessment 181

5.5 Transparent Packet Security . 186

iv

5.5.1 Separating Privacy and Confidentiality 187
5.5.2 Threat Model . 189
5.5.3 Transparent Packet Security . 190
5.5.4 Security Analysis . 199
5.5.5 Performance Assessment . 202

6 Availability 208
6.1 A Stateless Data Plane . 215

6.1.1 Assessing the PIT . 216
6.1.2 Stateless CCN using Backwards Routable Names 224
6.1.3 Architecture Evaluation . 227
6.1.4 Performance Assessment . 235

6.2 Efficient and Opaque Network Names . 239
6.2.1 Data Plane Attacks . 239
6.2.2 Network Names . 242
6.2.3 Network Name Integration and Ramifications 246
6.2.4 Experimental and Statistical Analysis 251
6.2.5 Performance Assessment . 257
6.2.6 Security Considerations . 265

6.3 Network-Layer Integrity Checks . 269
6.3.1 Content Poisoning and Namespace Arbitration 271
6.3.2 Threat Model . 273
6.3.3 Integrity Zones . 274
6.3.4 Security Analysis . 281
6.3.5 Performance Assessment . 283
6.3.6 Discussion and Challenges . 286

7 Conclusion 289

Bibliography 294

Glossary 320

v

LIST OF FIGURES

Page

1.1 Example CDN architecture . 6

2.1 XIA router [165] . 9
2.2 XIP addressing styles [165] . 9
2.3 Nebula architecture . 13
2.4 Example DONA RH tree . 17
2.5 Example PURSUIT network . 23

3.1 CCN interest and content forwarding logic 28
3.2 FLIC tree . 31

4.1 PRE-AC deployment . 47
4.2 PRE-AC procedure performance . 49
4.3 PRE-AC control retrieval flow . 50
4.4 IBAC content retrieval flow . 67
4.5 Interest service rates IBAC-protected interests 73
4.6 erase message forwarding strategy . 80
4.7 DFN topology . 89
4.8 AT&T topology . 90
4.9 erase message network overhead . 91
4.10 erase message forwarding overhead . 92

5.1 Name segment entropy . 116
5.2 Attack accuracy with varying auxiliary information and content popularity . 134
5.3 Attack accuracy as a function of ∆(DR,DA) and simulation time 135
5.4 Attack accuracy as a function of content sample size and simulation time . . 136
5.5 Match ratio for A distributed across edge and network routers 137
5.6 Attack accuracy with varying network caches 138
5.7 Attack accuracy with producer replication 140
5.8 EDF inference algorithm accuracy . 144
5.9 ANDāNA concentric encryption and decryption 153
5.10 Unidirectional AC3N RTT measurements . 162
5.11 Unidirectional AC3N throughput measurements 163
5.12 CCVPN connectivity architecture . 170
5.13 Testbed network topology with M consumers and N producers 181

vi

5.14 CCVPN performance with one consumer and one producer 182
5.15 CCVPN performance with multiple consumers and one producer 184
5.16 CCVPN performance with multiple consumers and multiple producers 184
5.17 TRAPS protocol summary . 193
5.18 TRAPS translation and construction procedure 194
5.19 TRAPS hash-based construction procedure 196
5.20 TRAPS performance overhead . 204
5.21 TRAPS throughput capacity . 206

6.1 Interest collapsing probability at R . 221
6.2 Modified stateless packet format . 226
6.3 Average PIT lookup and insertion overhead 229
6.4 Caching in stateless CCN . 231
6.5 Forwarding overhead in stateful (red, blue) and stateless (green) CCN variants 236
6.6 Stateful and stateless content retrieval latency 237
6.7 Interest forwarding with hash tables [289] . 250
6.8 Network and application name network overhead comparison 252
6.9 Average name fingerprint network overhead 253
6.10 Experimental and analytical collision probabilities for T32(·) 258
6.11 Caesar FIB Prefix Bloom Filter . 260
6.12 Merged BF FIB . 261
6.13 Patricia trie FIB . 263
6.14 TB2F FIB lookup . 264
6.15 Network name percentage improvement hash-based FIBs (Naive and Cisco) . 266
6.16 Patricia trie FIB vs Naive and Cisco hash-based FIBs 266
6.17 Patricia trie FIB vs Caesar-4-128, Caesar-Filter-4-128, and Merged-Filter-4-

128 FIBs . 267
6.18 TBF-3-4-128 FIB vs Caesar-4-128, Caesar-Filter-4-128, and Merged-Filter-4-

128 FIBs . 268
6.19 Content poisoning attack . 272
6.20 Content generation attack . 272
6.21 A-controlled intermediate router (k = 2) . 276
6.22 Router MAC dependencies . 279
6.23 HMAC overhead . 284
6.24 Hashed HMAC overhead . 285
6.25 Integrity zone latency reduction . 286

vii

LIST OF TABLES

Page

4.1 Comparison of Green et al. [157] and Chow et al. [81] PRE schemes. 44
4.2 Relevant IBAC notation. 57
4.3 Overview of per-interest IBAC computational overhead. 71
4.4 Individual and batch ElGamal signature verification times. 72

5.1 Data privacy adversary examples. 107
5.2 Unibas dataset characteristics. 122
5.3 Name distribution per # of segments. 123
5.4 Relevant AC3N notation. 155
5.5 ANDāNA baseline bidirectional performance metrics. 164
5.6 AC3N bidirectional performance metrics. 164

6.1 CCN entity network name impact. 246
6.2 CCN packet network name impact. 246
6.3 Prefix distribution per # of prefix segments 253
6.4 Probability of collision results. 255

viii

LIST OF ALGORITHMS

Page
1 PRE-AC Encrypt . 51
2 PRE-AC ReKeyGen . 51
3 PRE-AC ContentDecrypt . 51
4 Interest generation . 65
5 Content generation . 65
6 Router authorization check . 66
7 SuffixHash name transformation . 113
8 SuffixHashFlatten name transformation . 113
9 Popularity inference algorithm . 143
10 Circuit session establishment . 158
11 Interest onion encryption . 159
12 Interest decryption and forwarding . 160
13 Content encryption and forwarding . 161
14 Consumer gateway interest encapsulation . 172
15 Producer gateway interest decryption . 172
16 Producer gateway content encryption . 173
17 Consumer gateway content decryption . 173
18 Obfuscate(F(·), sG, I(N)) . 193
19 EncryptContent(C(N), λ) . 194
20 DecryptContent(C(N̄)) . 194
21 Stateless interest processing . 226
22 Stateless content object processing . 227
23 Stateless BRN obfuscation . 233
24 Network name mapping . 244
25 Interest processing . 279
26 Content processing . 279
27 Content with compressed MAC processing 281

ix

ACKNOWLEDGMENTS

This dissertation is the culmination of many hours of research, design, development, and
writing. And after four and a half years, condensing the set of people directly involved in
this effort seems most challenging. Starting this list is easy, though. None of this would have
been possible without advisement from Gene Tsudik. Thanks to his expertise, experience,
and patience, I have grown and am not the same researcher or individual I was four years
ago. My sincere gratitude also go to Ersin Uzun, my research mentor and advisor during my
tenure at PARC. His support brought me to and kept me at PARC for several years, and is
an experience I will always treasure. Lastly, I would like to thank Marco Levorato for his
thoughtful lectures and advisement in the early and late years of my time at UCI.

Many other people helped me in one way or another. I would like to thank my colleagues in
the SPROUT lab, old and new, who offered critical assessment and thoughtful discussion of
many problems while at UCI. I am grateful for our arguments, recess, and evenings out. I
would like to especially thank Cesar Ghali, Ivan De Oliveira Nunes, and Tyler Kaczmarek.
There was also no shortage of constructive criticism or technical leadership during my time
at PARC. I’m indebted to Glenn Scott, Ignacio Solis, Alan Walendowski, Marc Mosko,
and Laura Hill for their endless stream of challenges, technical advisement, and (infrequent)
light-hearted harassment. I am also thankful to them for launching me into the worlds of the
IETF and IRTF. Participation in the ICNRG led to joint work and standardization efforts
in part driven by and alongside Dave Oran, Dirk Kutscher, Christian Tschudin, and Börje
Ohlman. It was at the IETF that I also became more acquainted with TLS and modern
transport security protocols. This interest eventually manifested in the start of a career at
Apple as a software engineer while finishing my PhD. This joint venture would not have
been possible without support from Lucia Ballard and Ivan Krstić. I am also grateful to my
friends and colleagues Tommy Pauly, David Schinazi, Eric Kinnear, Bailey Basile, Frederic
Jacobs, Yannick Sierra, and Sean Devlin for constantly reminding me of how little I know
and how much I have to learn.

Work-life balance was essential to finishing this dissertation. Thus, naturally, I am thankful
to friends outside of my academic and professional circles, especially Sam Skalicky, Greg
Knox, and Khrystin Knox, as sources of companionship, relief, and healthy distractions.
Similarly, I am thankful for my family, old and new. Although separated by an entire
country, my parents still find ways to be supportive and encouraging from afar. I’m also
eternally grateful to my brother for his support (and couch) during the early years of my
PhD. I am also thankful to the Corbin clan for welcoming me into their home and hearts.
Although not official, I consider them family. Finally, and most importantly, I want to thank
my fiancé Kaitlin for her endless, unwavering, and unparalleled support and encouragement.
She saw me through some of the best and worst times over these past years. She and our
dogs, Eris and Olik, made our many Californian apartments feel like home away from the
East Coast. I consider myself lucky to come home to them every day.

x

CURRICULUM VITAE

Christopher A. Wood

EDUCATION

Ph.D. in Computer Science 2017
University of California, Irvine Irvine, California

M.S. in Computer Science 2013
Rochester Institute of Technology Rochester, New York

B.S. in Software Engineering and Computer Science 2013
Rochester Institute of Technology Rochester, New York

RESEARCH EXPERIENCE

Research Scientist 2014–2016
Palo Alto Research Center, Irvine Palo Alto, California

Graduate Research Assistant 2013-2014
University of California, Irvine Irvine, California

Graduate Research Assistant 2010–2013
Rochester Institute of Technology Rochester, New York

PROFESSIONAL EXPERIENCE

Secure Transports Engineer Fall 2016–present
Apple, Inc. Cupertino, California

Network Software Engineer Fall 2014 – Fall 2016
PARC, Computer Science Laboratory Palo Alto, California

Security and Privacy Research Intern Summer 2013, 2014
PARC, Computer Science Laboratory Palo Alto, California

xi

REFEREED JOURNAL PUBLICATIONS

Privacy-Aware Caching in Information-Centric Net-
working

2017

IEEE Transactions on Dependable and Secure Computing

Can We Make a Cake and Eat It Too? A Discussion of
ICN Security and Privacy

2017

ACM SIGCOMM Computer Communication Review

Characterization of Small Trees Based on their L(2,1)-
Span

2015

AKCE International Journal of Graphs and Combinatorics

REFEREED CONFERENCE PUBLICATIONS

Namespace Tunnels in Content-Centric Networks 2017
42nd Annual IEEE Conference on Local Computer Networks (LCN 2017)

Mitigating On-Path Adversaries in Content-Centric
Networks

2017

42nd Annual IEEE Conference on Local Computer Networks (LCN 2017)

When Encryption is Not Enough: Privacy Attacks in
Content- Centric Networking

2017

4th ACM Conference on Information-Centric Networking (ICN 2017)

Closing the Floodgate with Stateless Content-Centric
Networking

2017

26th International Conference on Computer Communication and Networks (ICCCN
2017)

Protecting the Long Tail: Transparent Packet Security
in Content-Centric Networks

2017

IFIP Networking 2017

Mobile Sessions in Content-Centric Networks 2017
IFIP Networking 2017

Secure Off-Path Replication in Content-Centric Net-
works

2017

IEEE ICC 2017 Next Generation Networking and Internet Symposium (NGNI 2017)

(The Futility of) Data Privacy in Content-Centric Net-
working

2016

2016 Workshop on Privacy in the Electronic Society (WPES 2016)

xii

Network Names in Content-Centric Networking 2016
3rd ACM Conference on Information-Centric Networking (ICN 2016)

Trust in Information-Centric Networking: From Theory
to Practice

2016

25th International Conference on Computer Communication and Networks (ICCCN
2016)

BEAD: Best Effort Autonomous Deletion in Content-
Centric Networking

2016

IFIP Networking 2016

Practical Accounting in Content-Centric Networking 2016
2016 IEEE/IFIP Network Operations and Management Symposium (NOMS 2016)

AC3N: An API and Service for Anonymous Communi-
cation in Content-Centric Networking

2016

2016 IEEE Consumer Communications and Networking Conference (CCNC 2016)

Constructing Large S-boxes with Area Minimized Im-
plementations

2015

2015 IEEE Military Communications Conference (MILCOM 2015)

Secure Fragmentation for Content-Centric Networking 2015
IEEE MASS 2015 Workshop on Content-Centric Networking (CCN 2015)

Interest-Based Access Control for Information Centric
Networks

2015

2nd ACM Conference on Information Centric Networking (ICN 2015)

Secure Fragmentation for Content- Centric Networks 2015
14th IEEE International Symposium on Network Computing and Applications (NCA
2015)

An Encryption-Based Access Control Framework for
Content-Centric Networking

2015

IFIP Networking 2015

Mission Control: A Performance Metric and Analysis
of Control Logic for Pipelined Architectures on FPGAs

2014

2014 International Conference on Reconfigurable Computing and FPGAs (ReConFig
2014)

Flexible End-to-End Content Security in CCN 2014
2014 IEEE Consumer Communications and Networking Conference (CCNC 2014) Spe-
cial Session: Information Centric Networking

xiii

High Level Synthesis: Where Are We? A Case Study
on Matrix Multiplication

2013

2013 International Conference on Reconfigurable Computing and FPGAs (ReConFig
2013)

xiv

ABSTRACT

Security and Privacy Challenges in Content-Centric Networks

By

Christopher A. Wood

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Professor Gene Tsudik, Chair

Today’s Internet is aging. Connections are point-to-point and increasingly protected by end-

to-end encryption. This reduces security to data transport instead of data itself. Content-

Centric Networking (CCN) is a paradigm shift away from this host- and channel-based design.

CCN is an architecture for naming, securing, and transferring named data from producers

to consumers upon request. Consumers issue interests for named content. Routers for-

ward interests towards producers capable of providing authentic content with cryptographic

name-to-data bindings. Once found, routers forward content, in reverse, towards consumers.

Routers may also choose to cache content to serve duplicate future interests. Object secu-

rity, native authenticity, pull-based data transfer, flow symmetry, and in-network services are

among the notable characteristics of CCN. In this dissertation, we study security and privacy

issues that stem from these architectural properties. Specifically, we study variations and

facets of access control, privacy risks and remedies, and network-layer availability attacks

and architectural mitigations. For each issue, we describe the problem in detail and explain

several countermeasures. We also present detailed analyses and experimental assessments

for each approach. We find that sound engineering can mitigate several issues, while oth-

ers remain insurmountable challenges exacerbated by fundamental security and performance

tradeoffs made by CCN.

xv

Chapter 1

Introduction

This dissertation centers on security and privacy in Content-Centric Networking (CCN) We

begin by describing the current landscape of computer networks and the public Internet. We

then survey next generation networks and Information-Centric Networking architectures, of

which CCN is a particular instance. Specific details of the CCN architecture follow. We then

identify unresolved security and privacy problems in CCN. The remainder of this dissertation

presents a variety of approaches to mitigate these issues. The main contributions are:

• We present two distinct approaches to access control that vary in ease of use, network

participation, and application visibility. One based on content encryption – CBAC –

and another based on interest encryption – IBAC. CBAC and IBAC are complemen-

tary techniques that may be used in isolation or together for enhanced security and

privacy. We also describe a network-level content deletion mechanism to aid revoca-

tion, a particularly challenging problem in asynchronous and distributed access control

designs. My contribution involved designing, implementing, and evaluating the access

control designs and content deletion protocol.

1

• We show that pivotal architectural features make privacy difficult to attain in current

CCN. Attacks exploiting statically encrypted content suggest CCN is vulnerable to a

new set of attacks not applicable in modern IP-based networks. We describe essential

requirements for varying degrees of privacy in CCN. Strong variants of privacy reduce

CCN traffic to end-to-end encryption similar to TLS in IP-based networks. We then

present a number of protocols and system designs that can be used to improve pri-

vacy of all entities. Approaches include Tor-like tunnels, network-layer tunnels, and

application-layer key exchange and end-to-end encryption. Each targets different ad-

versaries and operate at different layers in the network stack. My role in this segment

involved formalizing notions of privacy in CCN and studying the extent to which pri-

vacy is feasible with static content. Building on these results, I designed and evaluated

systems and protocols to enable or improve privacy.

• We present a variety of availability or denial-of-service attacks on the CCN architecture

and constituent applications. Examples include standard resource exhaustion in the

data plane and prefix hijacking (content reachability) attacks. Some attacks can be

mitigated with network-layer modifications. We argue that others, such as the classic

Interest Flooding attack, mandate more substantial architectural changes. To that

end, we propose a CCN modification that aims to mitigate this class of attacks in

standard deployments. We also show how packet formats can be slightly modified to

reduce router-specific computational DoS vectors. Lastly, we propose a technique for

lightweight and efficient network-layer integrity checks that help detect prefix hijacking,

or on-path, attackers. My involvement in this area included exploring and evaluating

incremental modifications to the CCN network layer, as well as a complete re-design

of the data plane.

2

1.1 The Internet and Modern Network Stacks

Today’s Internet is built on the Internet Protocol (IP) [256]. IP is conceptually simple.

Every packet, or datagram, has an IP source and destination address, along with some

additional control information. Every network entity, e.g., host or router, is identified by an

IP address. IP addresses have two parts: (1) network prefix and (2) host identifier. This

allows IP addressing to scale with the number of network hosts. Routers, or packet switches,

use addresses to move packets from source to destination. A Forwarding Information Base

(FIB) maps IP address prefixes to interfaces. When processing a packet, a router performs a

longest-prefix-match (LPM) query on the FIB and, if a match is found, forwards the packet

to the corresponding interface. If the packet is larger than the destination link MTU, it

can be fragmented and subsequently reassembled by the receiver.1 If a packet cannot be

forwarded, it is dropped and an error message is generated according to the Internet Control

Message Protocol (ICMP) [257]. Routing protocols such as BGP [296], iBGP [166], and

RIP [167] populate router FIBs. These enable packets to be forwarded within and between

networks in the Internet.

IPv4 was the first version of IP. IPv6 is the next incarnation [100]. In addition to extending

the address space, IPv6 enhances IPv4 in several ways:

1. Fragmentation is not allowed. Endhosts must fragment packets based on the path

minimum MTU (PMTU). PMTU discovery is possible using techniques such as those

described in RFC 1981 [218].

1Not all fragments can be fragmented. Those which requirement fragmentation yet carry a “do not
fragment” flag are dropped instead.

3

2. Packets can carry optional extension headers (EHs) to modify packet processing be-

havior. Examples of headers include AH and ESP protocol headers (see below). This

obviates the need for framing to encode these protocol messages.2

Neither IPv4 nor IPv6 provide origin authenticity, data integrity, or confidentiality. Any

part of an IP packet can be modified or forged. IPsec is an extension to IP that provides

some security features to mitigate these attacks. The Encapsulating Security Payload (ESP)

[185] protocol encrypts and authenticates IP packets. The less-used Authentication Header

(AH) [184] protocol only provides origin authentication and integrity. Both ESP and AH can

be run in either tunnel and transport mode. Tunnel mode is used between two gateways or

routers that share keying material. Endpoints encrypt and encapsulate entire packets over

this tunnel. In contrast, transport mode offers end-to-end protection of (only) IP packet

payloads. The Internet Key Exchange (IKE) [182] protocol is used to establish ESP and AH

protocol keys. As an extension, IPsec is not used by default – it must be explicitly enabled

by the endpoints. The typical use of IPsec is to establish Virtual Private Networks (VPNs)

in IP-based networks.

Transport protocols such as TCP [258] are built on top of IP. TCP in particular provides

a reliable, in-order, byte stream interface. TCP also provides flow and congestion control.

Applications may send and receive arbitrary-length application data over TCP. The protocol

is responsible for segmenting data into segments, which are encapsulated into individual IP

packets that are then sent across the network. End-hosts can support multiple TCP streams

(or flows) simultaneously. Each one is identified by a unique port number. In contrast

to TCP, User Datagram Protocol (UDP) [255] is a much simpler transport protocol that

supports lightweight connectionless delivery of arbitrary-size datagrams. As with TCP, each

UDP process is identified by a unique port number.

2IPv6 and IPv4 headers may still precede AH and ESP headers. Extensions are not needed for these
protocols.

4

End-to-end transport security protocols are built on top of transport-layer protocols. For

example, Transport Layer Security (TLS) [107] and the more recent Quick UDP Internet

Connections (QUIC) [20] protocol are built on top of TCP and UDP, respectively. Other

transport security protocols include tcpcrypt [60], CurveCP [54], and MinimalT [252]. These

all enable end-to-end (authenticated) encryption where possible, and may subsume or du-

plicate similar functionality at the network layer, e.g., ESP.

Secure transport protocols such as TLS are slowly becoming the thin waist of the Internet

and bedrock of modern network stacks. For example, many ubiquitous application proto-

cols, such as HTTP and DNS, map to TLS. This is done to limit information leaked to

(untrusted) networks and ensure origin authenticity. However, end-to-end encryption raises

challenges for existing networks and technologies. Standard techniques such as deep-packet

inspection and differential treatment become infeasible since middleboxes cannot inspect en-

crypted packet payloads [223]. These are often useful for detecting specific types of attacks,

e.g., mail abuse and SPAM, phishing, botnet activity, etc. Other standard practices such

as measurement, congestion management, load balancing, content compression, and use of

performance-enhancing proxies (PEPs) are all affected by the proliferation of end-to-end

encryption [238, 223], leading to adaptive solutions [284, 239].

To cope with these challenges, network operators often deploy TLS and other connection

terminators close to clients in geographically localized points-of-presence (POPs). Typical

traffic inspection is possible after secure connection termination. This is a common design for

modern content-distribution networks (CDNs). Such CDNs are composed of pre-positioned

caches that terminate TLS connections and typically serve cached data so as to avoid expen-

sive client-to-server round trips. Through mechanisms such as anycast, client connections

are redirected to geographically close CDN nodes.

After TLS connection termination, application data flows through CDN POP pipelines. Typ-

ically, part of this pipeline involves checking for cached resources and, if absent, forwarding

5

Client TLS
terminator

CDN logic Cache Long-term
TLS Origin

Request (POP) Pipeline

Figure 1.1: Example CDN architecture

requests to origin servers. Response are then sent back, cached, and served to clients. This

type of flow is shown in Figure 1.1.3 Application data remains protected, albeit visible,

within the CDN network, and is (usually) encrypted in transit between the CDN and origin

servers.

In conclusion, modern network stacks begin with TLS or similar secure transport protocols.

End-to-end encryption forces end-to-end communication semantics and encourages overlay

systems to combat scalability problems and improve network performance. Thus, deviating

from these architectural patterns may require a change at the network layer. It is precisely

this idea and endeavor that we focus on in the remainder of this thesis.

3CDNs such as Fastly, Akamai, and Cloudflare have similar architectures.

6

Chapter 2

Next-Generation Networks

IP is aging. Over time, its limitations have been addressed piecemeal by protocols such as

IPsec and TLS, and massive deployments of technologies such as CDNs. Many alternative

network-layer architectures were designed, developed, and even deployed in the past decade

in an attempt to move beyond the IP-based Internet. The National Science Foundation

(NSF) Future Internet Architecture (FIA) program facilitated many such efforts by funding

the following projects: eXpressive Internet Architecture (XIA) [165], MobilityFirst [280],

Nebula [35], and Named-Data Networking (NDN) [342]. NDN, unlike the others, is a type

of Information-Centric Networking (ICN) architecture, along with CCN. Other prominent

ICN architectures include the Data-Oriented Network Architecture (DONA) [192], Network

of Information (NetInf) [112, 96], ICEMAN [332], and PURSUIT [124]. In this section, we

overview these architectures, except for CCN and NDN, which are discussed in Chapter 3.

7

2.1 Future Internet Architecture Candidates

2.1.1 eXpressive Internet Architecture

eXpressive Internet Architecture (XIA) [165] is a principal-centric network architecture.

There are four primary principal types: network, host, service, and content. Network and

host-centric networking supports end-to-end communication between two peers, e.g., video

communication and file sharing. Service-centric networking enables access to services, e.g.,

databases and file servers. Content-centric networking supports direct access to data and

enables, among other features, content distribution. Each principal has an intrinsic identifier,

denoted XID, where X is the type of principal. Thus, HID, SID, and CID denote a host,

service, and content identifier, respectively.

XIA is amenable to new principals, provided each principal can authenticate itself to others.

Typically, this is done by cryptographically binding a principal’s name, or identifier, to one

or more security properties or characteristics. For example, a host or service may use the

cryptographic hash of its public key as its name. For hosts, this ensures that each host has

a unique name across the entire network. Content may be authenticated by using the hash

of the content as its name.

One additional requirement is that each network entity must be capable of expressing its

intent, e.g., support for specific services or availability of content. This permits routers

to perform principal-specific behavior when processing or forwarding packets, as shown in

Figure 2.1.

XIA uses the eXpressive Internet Protocol (XIP) to forward packets based on XIDs. XIP

defines the packet format, addressing scheme(s), and router processing behavior. XIP “ad-

dresses” are XID trees, i.e., XID directed acyclic graphs (DAGs), as illustrated in Figure 2.2.

Each DAG may have multiple leaf nodes (sinks) and only one root (source) node. An edge

8

Source XID-
Type Classifier

NID processing

HID processing

SID processing

CID processing

Next Dest.
XID-Type
Classifier

NID processing

HID processing

SID processing

CID processing

Route
Success?

Incoming
Interface

Outgoing
Interface

yes

no

Fallback

Source XID-Specific
Processing

Next Dest. XID-Specific
Processing

Figure 2.1: XIA router [165]

represents a link between two principals. XIP addresses may specify any DAG, provided

they are single connected components [165].

NID NIDSID CIDNIDa 1a 12

(a) Source routing

CIDNID NID

NID NID NID

11 2

3 4 5

(b) Multiple paths

HID HID

SIDSIDNID1 21

1 2

(c) Infrastructure evolution

Figure 2.2: XIP addressing styles [165]

XID trees enable in-network processing and reliable path selection while permitting principal

type expansion. They also permit several interesting forms or styles of addresses, as shown

in Figure 2.2. Common variations include:

• Source routing (Figure 2.2a): A source chooses the principals through which the packet

will flow.

• Multipath routing (Figure 2.2b): Packets carry multiple paths.

• Path evolution (Figure 2.2c): Host-based path alternatives are offered as services are

rolled out.

XIA routers process XIP packets as shown in Figure 2.1. After identifying the source and

destination types, principal-specific processing steps are performed. Source-specific process-

9

ing is not necessary, though it may be used for CID requests to inspect or populate a router

content cache. Destination-specific processing is done to determine the appropriate forward-

ing behavior based on the type of the next hop principal, as indicated by the XIP address.

A router attempts to forward a packet to all possible destination XIDs in the order they

are constructed in the address, i.e., each outgoing XID address edge is tried in sequence. If

none succeed, the packet is dropped and an unreachable error is generated. Thus, users are

responsible for providing fallback paths – typically composed of specific HIDs – to ensure

correct packet forwarding. Moreover, all routers must implement HID and NID (network

ID) functionality to ensure that “standard” host-based addresses are available.

Depending on the principal type, addresses may be formatted differently. For example, to

address host HID inside network NID, derived from the public key of the corresponding

host and network, an address of the form NID:HID is used. (NID and HID authentication

mitigates address spoofing, DoS, and cache poisoning attacks.) Similarly, the address of a

service with SID, offered by host HID in network NID, is NID:HID:SID.1 Content addresses,

i.e., those with a CID, can be extensions of a service address or, depending on the application,

unbound from services entirely.

2.1.2 MobilityFirst

As the name suggests, MobilityFirst is a network architecture focused on pervasive node

mobility [8, 280]. Every principal, including devices, content, interfaces, services, and even

human end-users, is a uniquely identifiable and addressable network entity. MobilityFirst

separates the locator, or dynamic network location, of a principal from its constant and

unique identity. This permits mobility via network locator updates, provided by the dis-

tributed Global Name Service (GNS), and facilitates service implementation and location-

agnostic deployment [240].

1This is analogous to the IP address and port combination that is ubiquitous in today’s Internet.

10

MobilityFirst network layer is responsible for routing packets using locators and identifiers.

(Technically, however, both are a form of identifier.) A principal identifier, or Global Unique

Identifier (GUID), is cryptographically bound to a unique value associated with the corre-

sponding principal. For example, a GUID can be the hash of a service’s public key, or the

hash of a specific content. GUIDs may be associated with human-readable names through

another external service called the Name Certification Service (NCS). GNS resolves these

names to GUIDs. (We describe the GNS in more detail later.) GUIDs can also be grouped

into sets, called multicast GUIDs. Unlike IP multicast addresses, these are used to support

multihoming, anycast, and multicast among principals.

A network locator, or Network Address (NA), is a flat identifier bound to a specific network.

NAs are akin to AS-es in today’s IP-based Internet, as they collate hosts, routers, and services

under common address spaces. Multihomed hosts, e.g., those with a WiFi connection to an

enterprise network and cellular connection to a carrier network, may be associated with

multiple NAs.

(NA, GUID) tuples serve as fully-formed principal addresses. Packets directed to principals

are transported in Packet Data Units (PDUs), which carry the destination address, payload,

and additional metadata and control information. NAs are used to route PDUs between

networks using an inter-domain routing protocol. Within a network, routers forward PDUs to

specific principals using GUIDs. Routers may also optionally cache GUID packets to reduce

traffic. Moreover, if the network fails to deliver a PDU to the destination GUID, then it can

store the PDU, in one or more routers, and periodically query GNS for a new (NA, GUID)

binding to re-route it accordingly. Endpoints must know or be able to derive the GUID with

which they want to communicate. For example, for a unique address content generated by

a specific producer, GUID may be derived from content GUID (CID) and producer GUID

(PID). This is precisely how content distribution networks are built in MobilityFirst.

11

Since principals are assumed to be mobile, endpoints must query GNS with GUIDs to obtain

fresh principal NAs. Internally, GNS is composed of two services: (1) NCS and (2) Global

Name Resolution Service (GNRS). NCS is analogous to today’s Certificate Authority (CA),

which is tasked with creating trustworthy bindings between standard identifiers (GUIDs)

and human-readable representations. MobilityFirst does not mandate a common root of

trust across NCSs; each principal is free to choose its own NCS(s) to trust. GNRS is a

resolution service backed by a distributed database, similar to DNS2, that stores mappings

from GUIDs to NAs [231, 207, 313]. Clients can query GNRS with a GUID to obtain an

NA mapping or update GUID to NA mappings. GNRS offers a secure insert and update

variant [207]. Clients sign their insert and update queries, which are subsequently verified

and validated by border routers. (Validation is done by, e.g., querying the DHCP server to

validate client NAs.) When a GUID to NA mapping is updated, the border router forwards

it to the appropriate GNRS replica to be inserted into the distributed database.

2.1.3 Nebula

Nebula [35, 36, 37] is a future Internet architecture that integrates confidentiality, integrity,

and availability into the design. It is composed of three tightly coupled parts:

• NEBULA Data Plane (NDP): Responsible for securely moving packets along mutually

agreed-upon paths.

• NEBULA Virtual and Extensible networking Techniques (NVENT): Responsible for

establishing trustworthy routes between nodes based on policy routing [43] and service

naming [245].

2GNRS differs from DNS in several respects. First, GNRS does not restrict entries to structured, hierar-
chical names. Second, GNRS does not use TTL-based caching for tracking the liveness of mapping entries.
Third, GNRS does not statically delegate authority for names to specific servers, thereby allowing replication
responsibilities to be actively distributed.

12

Realm Realm

NCore

NDP forwarder

NCore router

Consent server
NVENT path discovery

NVENT connectors

Figure 2.3: Nebula architecture

• Network core (NCore): Large, interconnected collection of enterprise data centers.

Data is replicated across data centers to ensure reliability and availability. NCore is

based on specially-designed, high-performance core routers [205].

These components are shown in Figure 2.3.

NDP is based on a Path Verification Mechanism (PVM), which defines packet forwarding

protocol and mechanics. PVMs provide path consent, which is when that every entity on

the path has agreed to participate, and path compliance, which is when every hop on the

agreed-upon path can verify packet provenance. ICING [235] is one PVM that provides these

properties; others include TorIP [206], Transit-as-a-Service [251], and plain IP. ICING can

run at the network layer, composed of ICING nodes, or as an overlay, composed of ICING

endpoints. Each ICING hop can verify a packet’s path compliance cheaply before dedicating

any additional (upstream) resources to forwarding the packet.

Informally, a packet is sent as follows. First, a client requests a path P to a service through

NVENT, the control plane manager. (We describe service discovery later.) Paths target

services and terminate at NCore, the data center interconnect. A path is essentially a

sequence of ICING node IDs, each of which is a public key. Paths can be established using

any policy mechanism [235]. Once acquired, NVENT obtains permission to use the path

from each ICING hop. Permission is granted in the form of a Proof of Compliance (PoC).

This is a cryptographic token generated by a per-domain consent server trusted by each

13

forwarding node. Each PoC asserts that the entire path is permissible and supported by the

transit policy. Once NVENT returns all PoCs needed for the path to the client, the latter

creates the initial packet header by computing the following fields.

• Proof of Provenance (PoP) token, for each node, computed using key ki,j shared be-

tween nodes i and j (i < j). (To begin, i = 0 since the client is the first hop in the

path.) A PoP is a message authentication code (MAC) over the packet. Moreover,

PoP keys are not pre-distributed or exchanged symmetric keys; they are derived us-

ing non-interactive Diffie-Hellman with (a) the sender’s private key and (b) receiver’s

public key (ID).

• Authenticator Aj for each node j using PoCj, P , and M .

For a path of length l, the i-th PoP token is XOR’d with Ai to form a verifier Vi, where

0 < i ≤ l. Verifiers are checked as a packet moves throughout the network to ensure path

compliance and provenance. Assume, for example, that NDP router Rp (1 ≤ p < l) receives

a packet with l verifiers, V1, . . . , Vl, constructed as follows:

Vi = Ai ⊕min{p−1,i}
j=0 PoPj,i

To verify Vi, for i ≤ p, Rp first recomputes PoCi, Ai, and PoPj,i for each downstream hop

Rj. Rp then uses these values to recompute Vi. If the verifiers match, then each verifier Vj,

j = p+ 1, . . . , l, is modified as follows:

Vj = Vj ⊕ PoPp,j

ICING packet headers are modified in place at each hop until the packet reaches the desti-

nation or an NCore data center, where it is forwarded to the correct service provider.

14

Nebula paths are service-centric, not host-centric. (Transition from host names to services

aids client mobility and distributed service generation.) Clients resolve service names, or

IDs, to paths using a service resolution service in NVENT. Service providers, which emanate

from NCore, use NVENT to request services with certain properties, such as high availability

or reliability [35]. NVENT handles route creation to satisfy desired properties. For example,

in the case of a high availability service, NVENT might use multi-path inter-domain routing

when building a path.

Serval is the de facto service resolution mechanism used by end-hosts in the Nebula archi-

tecture [245].3 Beyond adopting service IDs in lieu of host names, Serval keeps end-hosts

unaware of Nebula via a transparent Service Access Layer (SAL). This layer also replaces

IP and port connections with interface-agnostic flow IDs. A sender and receiver use flow

IDs to identify connections. This permits client mobility in the presence of network address

changes such as NAT re-bindings.

2.2 Information-Centric Networking

Content is the primary focus of many emerging applications. Yet, existing networks are

focused on hosts, not content. Moreover, in-network processing becomes increasingly prob-

lematic with the proliferation of protocols such as TLS.4 Technologies such as CDNs are

content-aware and can store and forward content closer to consumers. According to [168],

this trend will only increase, leading to increased reliance on end-to-end encryption and more

widespread deployment of content-aware overlay networks.

Information-Centric Networking (ICN) is a network paradigm that moves away from today’s

host-based design. Content, rather than endpoints, are the primary addressable units in the

3Serval does not support service discovery – only resolution.
4As of 2017, HTTPS adoption is quickly growing on all modern platforms, including Android, Windows,

Mac, and Chrome OS [116].

15

network. Producers publish content (or ways to access content), and consumers request, or

subscribe to, this content. Traffic consists predominantly of content requests (subscriptions)

and responses (publications).

Content is addressed by a specific name that is securely bound to data. This allows con-

sumers to verify the name-to-data binding. Moreover, by naming data, network nodes, or

routers, can opportunistically cache content in hopes of satisfying future requests for the

same content.

Request and response forwarding mechanics vary across ICN incarnations. Some ICN archi-

tectures buffer requests for content that cannot be satisfied locally via a cache or remotely

by forwarding to another hop, whereas others may drop the requests immediately. Mechan-

ics aside, named content is requested by consumers, generated securely and published by

authoritative producers, and cached unilaterally in the network [152].

In this section, we describe several prominent ICN architectures, including: Data-Oriented

(and Beyond) Network Architecture, Network of Information, and ICEMAN. NDN and CCN

are deferred to the following chapter.

2.2.1 Data-Oriented (and Beyond) Network Architecture

Data-Oriented (and Beyond) Network Architecture (DONA) is a network architecture built

on top of IP [192]. As the name suggests, DONA focuses on data and the principals (pub-

lishers) of data. Each principal is associated with a public and private key pair. An address

for a specific piece of data is composed of a publisher’s public key digest (P) and label (L)

assigned by the publisher, denoted P:L. L can be set to the cryptographic data hash to

ensure uniqueness. A data packet with the name P:L is digitally signed using the private

16

RH

RH RH

RH

P : Li

user

P : Lj

RH

root

Register(P : Li)

Find(P : Li)

Register(P : Lj)

Figure 2.4: Example DONA RH tree

key associated with P. (Trust management, i.e., determining which P’s are trustworthy, is

deferred to the application.)

DONA principals can delegate to other hosts to serve data on their behalf. In such cases,

P:L tuples remain unchanged, thereby permitting host-based or service-based mobility and

redundancy.

Two fundamental name-resolution messages are supported: FIND and REGISTER. Each mes-

sage carries a name, e.g., FIND(P:L). So-called Resolution Handler (RH) nodes route these

messages. RH nodes are arranged in a hierarchical, DNS-like fashion to support routing

scalability, as shown in Figure 2.4.5 DONA requires every domain have at least one logical

RH, though it may be implemented by a series of physically interconnected RH nodes. Also,

the root RH has visibility of the entire network. RHs are assumed to have shared public

keys so that they can authenticate all received packets.

Each RH contains a registration table (RT) that maps names to adjacent nodes, i.e., parents,

peers, or children, and the distance to the name. It may also contain an optional cache

5Domains can vary in size from a small collection of nodes to an entire AS.

17

that is used to store previously forwarded data packets. RHs update their RTs, if necessary,

upon receipt of a REGISTER(P:L) packet. RHs may also forward registration packets to

their parents or peers depending on RT contents and local policy, similar to BGP [166].

Examples of policies include refusing to serve a peer absent some financial agreement. Also,

registration effects are temporary since name entries have a TTL; principals must send fresh

registration messages at or before TTL expiration.

An RH attempts to forward a FIND(P:L) packet its closest destination using RT contents.

If an RT entry for P:L exists, the packet is forwarded downstream to the corresponding hop.

If there are no viable RT entries, the packet is forwarded to the parent RH. This repeats

recursively until the packet reaches the root, at which point it will be forwarded down the

tree towards the correct destination, or dropped.

Unlike other architectures, the DONA overlay exists to route data requests. Once found,

transfer of this data replica from the storing host to the FIND requestor is initiated and

deferred to IP (and transport) layer(s). The FIND requestor may be a user or RH, depending

on the IP source address in the packet. An RH can set itself as the originator of a FIND

message to receive and cache data replicas before transmitting to the original requestor.

Thus, DONA does not require modifications to the IP infrastructure and can exploit existing

transport mechanisms and protocols for bulk data transfer.

Despite its simplicity, DONA is not free of security issues. Denial of Service (DoS) is a

major concern. RHs can refuse to propagate REGISTER or FIND messages. Also, malicious

consumers can flood the RH overlay with nonsensical names to overlay nodes near the RH tree

root. DONA assumes rate limiting mechanism(s) at the IP layer and requires application-

imposed restrictions for the number of FIND and REGISTER messages permitted per second

(or any other unit of time). If trust is not subverted, only DoS attacks by malicious entities

are possible. Lastly, DONA defers principal key revocation to applications.

18

2.2.2 Network of Information

NetInf is an ICN architecture for transferring Named Data Objects (NDOs). The archi-

tecture is designed to support creating, locating, exchanging, and storing NDOs. To en-

sure consistency, each NDO is associated with at least one name, or Network Informa-

tion (NI), derived from information associated with the NDO [28, 112, 96]. In the case

of static content, this is done with the content hash (and hash algorithm) in the NI, e.g.,

ni:///sha-256;UyaQV-Ev4... [113].6 The hash may also be computed over the public key

of the NDO producer, or Information Owner (IO). This is referred to as a dynamic NDO.

NIs may also contain human-readable segments, e.g., ni://example.com/sha-256;f4OxZX.

Consequently, NDO names are typically flat identifiers that simultaneously serve as locators

and identifiers. This permits mobility across network domains.

NetInf data is moved via a request-response protocol. There are three message types [112]:

• GET: a request for a specific NDO, identified by the NDO’s name and, optionally, a

network locator. NetInf nodes may reply to GET requests with locators where the

desired NDO may be found, i.e., another network or a specific host.

• PUBLISH: an announcement for a specific NDO name. PUBLISH messages may op-

tionally carry a network locator or the actual NDO itself alongside the announcement.

• SEARCH: a query for a set of NDOs satisfying one or more keywords. SEARCH messages

are often issued to translate human-readable keywords to specific NDOs.

Nodes cannot authenticated NetInf messages. Requests are inherently insecure and cannot

be trusted. In contrast, since each NDO is bound to some security context, e.g., the data

hash or publisher’s public key, any entity may verify the integrity of an NDO. Thus, integrity

is an intrinsic property of NetInf. As suggested by Dannewitz et al. [95], it is advantageous

6The NI grammar and encoding details is described at length in [113].

19

to verify both NDO contents and publisher provenance. This is done by (a) including the

IO key in the dynamic name and (b) signing NDO content hash with the IO key. Verifying

an NDO then requires one to verify the signature, rather than simply compare hashes for

equality.

One consequence of dynamic NDOs is that identities are included in names, leaking infor-

mation about the publisher. Pseudonymity is possible by using rotating identifiers for each

NDO.

NetInf message routing uses Name-Based Routing (NBR) and a Name Resolution Service

(NRS). Routers use NBR to forward GET messages based on NDO names and local routing

table. NRS is a supplemental service designed to map NDO names to network locators. A

locator identifies the network where the desired NDO is stored. As mentioned above, they

can be sent with GET messages to help aid routing decisions. (In this way, a locator is similar

to an IP address.) Typically, clients use NRS to obtain NDO locators. Routers may also use

NRS if they receive a GET message they cannot forward further. In this case, a router may

(repeatedly) query NRS to obtain a locator before forwarding the message.

In contrast to requests, there is no mandated forwarding mechanism for responses. For

example, routers may store per-packet state used to forward GET responses in the reverse

direction, i.e., to the interface on which they were received. Alternatively, a router may

store this state in the packets via labels. Routers may also choose to cache forwarded NDOs

to satisfy future GET messages. Off-path caches are permitted. Routers may forward GET

messages to nearby off-path caches that have the desired content.

Clients may also cache NDOs and advertise their own locators. This permits peer-to-peer

content sharing at the cost of client privacy.

20

2.2.3 ICEMAN

ICEMAN (Information-CEntric Mobile Ad-hoc Networking) [332] is an event-based ICN

architecture designed for tactical environments where fresh information needs to be dis-

tributed quickly and reliably. It supports three types of information dissemination: (1)

localized flooding and replication within a single connected network component (originating

from the producer), (2) interest-driven routing, and (3) mobility-driven routing. Flooding

quickly pushes information to the network and proactively caches content for quick access.

Similarly, interest- or request-driven routing proactively fetches information that might be

needed. Unlike other ICN architectures, per-request state is not removed once a request

has been satisfied. This is done so that future updates to the same content can be routed

to intended recipients. Mobility-based routing is built on PRoPHET [204], a probabilistic

routing protocol for networks where connectivity is intermittent, yet predictable.7

Each content C carries a payload P (C), associated metadata, M(C), a timestamp of creation,

and identity (hash) of the payload data. Content metadata consists of key-value attribute

pairs for the data and is used as the basis for matching. There are two types of content:

application data and control information, such as ICEMAN node descriptors and routing

updates. The latter is used to configure and maintain paths, as well as to make forwarding

decisions. For example, nodes share descriptors of their cache contents with neighbors in

the form of bloom filters (BFs). Content is only forwarded to a specific neighboring node if

there is no match in the neighbor’s BF. Each content also has an associated scope S(C) that

defines the nodes, including consumers, which are eligible receivers of the content. Content

is not forwarded to ineligible nodes.

Interests for content originating from node S are expressed as predicates I(S), which are

weighted key-value (or attribute-value) pairs. That is, each pair is a tuple of some key

7PRoPHET was originally designed for use in Delay Tolerant Networks (DTNS).

21

(attribute), value, and weight, denoted (a, v, w). An interest predicate matches a content if

the sum of weights of overlapping attributes between the predicate and content metadata

exceed some threshold. Content with the largest match weight and freshest timestamp is

returned in response to an interest.

At each hop, content is cached according to some utility function [311, 77]. Content that

does not meet a minimum utility is immediately discarded. Utility functions may be content

and context-sensitive, i.e., vary over time. Content is evicted when space is needed or some

pre-determined amount of time has elapsed. ICEMAN users can specify tags (or classes) of

content to purge based on content attributes, as well as some maximum freshness threshold

that will trigger eviction. At the time of eviction, fresh data is preferred over stale data,

following the caching strategy outlined by Kim et al. in [189]. Each content’s utility is also

a factor in the eviction strategy, such that the goal is to reduce the number of items in the

cache while simultaneously maximizing utility.

As an ICN architecture, ICEMAN emphasizes content-based instead of channel-based secu-

rity. However, in contrast to other architectures, both authenticity and confidentiality are

core services of the network. Multi-authority attribute-based encryption [57, 199] is used to

encrypt content, where attributes are assigned to content metadata. Content is signed with

keys certified by one or more authority. Thus, ICEMAN depends on a PKI where trust is

anchored in one or more authorities.

2.2.4 PURSUIT

PURSUIT [124] is a publish-subscribe ICN architecture that emerged from the FP7 EU

project [17] and its predecessor, Publish-Subscribe Internet Routing Paradigm (PRSIRP)

[304, 122, 126]. Information in PURSUIT is identified by a name, composed of a Rendevouz

ID (RID) and Scope ID (SID) tuple. RIDs identify a specific piece of information in the cor-

22

RV

TM

F FF

F

FP S

publish subscribe

build
route

return
route

correct
forward

incorrect
forward

Figure 2.5: Example PURSUIT network

responding SID. RIDs can also belong to multiple SIDs. Thus, a single RID can be resolved

via multiple names, each with a different scope. Scopes can be arranged hierarchically to

control information access. Subscribers may specify a sequence of SIDs with a single RID,

e.g., (SID1/SID2/SID3, RID). Publishers typically use scopes to restrict access to a particular

content.

PURSUIT networks consist of three primary entities: subscribers, publishers, and network

brokers. Each network broker contains a Rendevouz Node (RN), Topology Manager (TM)

and Forwarder Node (FN). RNs are responsible for matching subscriptions with publications

with a specific scope. TMs monitor the network and construct pre-defined publisher-to-

subscriber paths. These are delivered to publishers by RNs. TMs run a routing protocol

between each other in order to move scoped publications or subscriptions to the correct

broker. Lastly, FNs are responsible for moving packets from publishers to subscribers. This

basic architecture is shown in Figure 2.5.

Links between entities are identified with Link IDs (LIDs). Each LID is a flat binary string (of

some suitably large length). When constructing paths between publishers and subscribers,

TMs construct a single routing label, called a zFilter, equal to the bitwise OR of each LID

23

along the desired path. For example, if a packet must traverse LIDs l1, l2, and l3, then the

zFilter is (l1 ∨ l2 ∨ l3).

When a forwarder receives a packet, it performs a bitwise AND with each of its outgoing

LIDs. The packet is forwarded to all links for which this result yields the same outgoing

LID. Depending on LID construction, this may result in packets being forwarded to incorrect

destinations.

24

Chapter 3

Content-Centric Networking

This chapter describes the Content-Centric Networking (CCN) architecture and core proto-

col. We begin with an overview of the architecture, design principles, and protocol messages

between producers and consumers. We then describe how the network routes and forwards

CCN packets. We finish with a brief survey of security and privacy problems unique to CCN

and related ICN architectures.

3.1 Overview

CCN is a network architecture for transferring named data, or content, from producers to

consumers upon request [226, 172]. (Producers generate or publish content under a given

routable prefix.) Names are composed of one or more variable-length segments opaque to

the network layer. Segment boundaries are explicitly delimited by “/” in the usual URI-like

representation [53, 229]. For example, the name of a BBC’s news homepage for May 20,

2017 might be: /bbc/news/05-20-2017/index.html.

25

To obtain content, consumers issue a request, or interest, carrying the data name. The

network is responsible for forwarding requests towards authoritative producers capable of

providing content responses. Once located, routers forward the content back to the consumer

along the reverse path the interest traversed. Each router may choose to cache the content to

satisfy future requests. This type of opportunistic caching serves three primary purposes: (1)

to support error control or recovery, e.g., when packet loss occurs downstream and consumers

retransmit interests, (2) to serve multiple consumers requesting identical content in (possibly

rapid) succession, (3) to help smooth out link and path variation over lossy or heterogeneous

networks.

As a consequence of opportunistic in-network caching, data may be served from entities

(routers) other than the original producer. This means that consumers must be able to

ascertain authenticity of each content object. This is especially important for caching routers;

one core rule in CCN is that a router must never serve content from its cache that has not

been verified. Otherwise, a malicious producer or router could inject and spread fake, or

poisoned, content through the network.

The standard way to prove content authenticity is via a producer-generated digital signature.

Signing content and its corresponding public verification key (or certificate) permits any

entity to verify authenticity. In cases where the producer and verifying parties share a

secret, such as a MAC key, the producer may compute and attach a MAC and shared key

identifier to content in lieu of a signature and public verification key. Routers without the

shared key cannot cache such content.

Taken as a whole, CCN has the following features:

1. Cryptographic name-to-data bindings.

2. Pull-based data transfer.

26

3. Symmetric traffic flow.

4. In-network services, e.g., opportunistic caching.

To the consumer, the network is a generic key-value service that maps names to content

with cryptographic assurances. To the producer, the network is a service which provides

data delivery to consumers. Routers merely facilitate the exchange of data for both services.

3.2 Forwarding and Matching Semantics

Each CCN node, i.e., consumer, producer, and router, is comprised of at least two compo-

nents:

• Forwarding Information Base (FIB): a table that maps name prefixes to egress link

identifiers using longest-prefix match (LPM). Interests are forwarded to links identified

by the FIB. Prefix-matching is done on name segments, not name bytes (or bits). For

example, Np =/foo is a prefix of N =/foo/bar, but not a prefix of N =/fo/obar.

• Pending Interest Table (PIT): a high-speed cache-like structure that stores names,

content identifiers, ingress link identifiers, and other miscellaneous information for

pending, i.e., unsatisfied, interests.

CCN nodes may also contain an optional cache, or content store (CS).1 The cache is indexed

by the complete data name.

The dataplane of a router R, as shown in Figure 3.1, works as follows. When R receives an

interest, it examines the name to determine if it has a copy of the content stored in its cache.

If it does, R transmits the matching content object in reply to the interest on the arrival

1We use the terms CS and cache interchangeably in the remainder of this dissertation.

27

interface. (We describe the matching rules below.) Otherwise, R records some state derived

from the interest, e.g., the arrival interface, in the PIT so as to provide a reverse path to

the requester. If there is no matching PIT entry, the router transmits the interest to the

next hop(s) specified in its FIB. If there is no matching FIB entry, an Interest Return, or

network-layer NACK [86], is sent to the interest arrival interface. If there is a matching PIT

entry, the new interest is aggregated with the existing pending interest and not forwarded

further. When a content response is later returned to R, it is forwarded to all downstream

interfaces listed in the matching PIT entry. R may cache the content in anticipation of a

future interest with a matching name.

PITCS FIBI(N) I(N)

C(N)

NACK(N)

CCN Forwarder

CS Miss
Lookup

Lookup PIT Miss
Lookup

PIT Hit
AggregateCS Hit

Return Content
FIB Miss

FIB Hit
Forward Interest

NACK Interest XDrop

PITCSC(N)

CCN Forwarder

PIT Hit
Insert

Forward Lookup

PIT Miss
Drop

X

C(N)FIB
Verify

Content

Figure 3.1: CCN interest and content forwarding logic

An interest matches a content object if their names match. Interests typically refine the

possible matching content objects by carrying additional constraints, or restrictions. One

restriction is KeyIdRestriction, or KeyId, which carries the hash digest of the content

object public verification key. This restricts the content object to having been signed by the

designated key. Another restriction is ContentObjectHashRestriction, or ContentId, which

carries the hash of the desired content object. An interest with a ContentId can match at

28

most one content object (with overwhelming probability), i.e., the one whose hash matches

the ContentId. An interest with a ContentId is often said to have a self-certifying name, as

first defined by Baugher et al. [48] and formalized by Ghali et al. [150], since the name and

ContentId identify a unique content. Interests with restrictions match content if and only if

the name and restrictions match. However, if an interest carries a ContentId it can match a

content object without a name. We call such content objects nameless ; their use is described

below. These matching rules are expressed in the following predicate. Let Ni (No), Ki (Ko),

and Hi (Ho) be the Name, KeyId, and ContentId in the subject interest (content).

(¬No ∨ (Ni = No)) ∧ (¬Ki ∨ (Ki = Ko)) ∧ (¬Hi ∨ (Hi = Ho)) ∧ (∃No ∨ ∃Hi)

3.3 Messages and Packet Formats

Structurally, names are sequence of typed segments.2 There are a number of types such

as T NAMESEGMENT, T VERSION, and T CHUNK. A segment with type t and value v is written

as t=v. For example, a segment with type T NAMESEGMENT and value “chris” would be

expressed as T NAMESEGMENT=chris. A complete name for BCC’s news homepage on May

20, 2017 might then be expressed as /bbc/news/05-20-2017/index.html. For clarity, we

might also express this name, in wire format, as an S-expression as follows:

(T NAME

(T NAMESEGMENT 3 “bbc′′)

(T NAMESEGMENT 3 “news′′)

(T NAMESEGMENT 4 “05− 20− 2017′′)

(T NAMESEGMENT 4 “index.html′′)

2CCN uses a Type, Length and Value (TLV) [259] format to encode all packet fields.

29

)

The default type of a segment is T NAMESEGMENT. We omit this below for presentation clarity.

Also, we refer to the i-th segment in name N as N [i] or Ni, depending on context.

Each CCN packet begins with a fixed and optional header. The fixed header identifies the

type of packet (message), the length of the fixed and optional header (in bytes), the total

size of the packet, and some additional metadata. The optional header carries hop-by-hop

fields, such as the message hash, interest TTL, or recommended cache time. See [225] for

more details of these fields. The packet format reserves two bytes for the packet length,

which places an upper bound of 64KB on the size of each packet. The body of the packet

contains multiple top-level TLV containers. These top-level containers carry the message

construct, e.g., the actual interest or content, as well as packet authentication information,

e.g., the public verification key and digital signature.

Interests and content objects are the base for different types of messages. The interest mes-

sage TLV contains a name TLV and optional payload TLV. The payload carries application

data bound to the name. When an interest carries a payload, its name is modified by ap-

pending a unique “payload identifier” name segment, of type T PID, to the end. This has the

effect of diversifying the interest to prevent inadvertent cache hits. As previously discussed,

interest messages may also carry a KeyId or ContentId. The content message TLV contains

an optional name TLV and payload TLV. The name is optional if the corresponding inter-

ests carry a ContentId.3 The payload carries the application data identified by the name.

Content may also carry fields that indicate the type of payload and its expiration time,

denoted PayloadType and ExpiryTime. Payload types include opaque application data, a

cryptographic key, or a pointer (described below). The expiration time denotes the absolute

time when the payload expires. Routers must not serve expired content.

3Producers will know whether or not this is the case and can omit the name as needed.

30

/a/b/c

inner FLIC nodes
(nameless)

data leaves

data

root FLIC node
(named)

Figure 3.2: FLIC tree

Manifests are a special type of message used to convey ContentIds in bulk to consumers.

The latter use these to create interests with a name and ContentId. FLICs are one type of

Manifest structure [307]. A FLIC packet, or node, is part of a network-level collection of

content objects. Each FLIC node in a collection contains a list of ContentIds that are used

to construct interests for specific content objects. Each name and hash digest pair is called

a pointer. (We often use the term locator to describe these names since the hash is the

real identity of the content.) FLIC nodes may contain or encode pointers to normal content

objects (data leaves) or other FLIC nodes, thereby creating a DAG structure with a single

FLIC root and normal content objects as the leaves. Typically, all nodes except the root

are nameless, as shown in Figure 3.2. Consumers resolve FLIC root nodes to data leaves by

performing an in-order depth-first-search of the pointers.

3.4 Named Data Networking Differences

Although this dissertation focuses on CCN, it would not be complete without a discussion of

Named Data Networking (NDN), which can be seen as CCN’s academic dual. NDN started

as a fork of the PARC CCNx project [10] in 2009. Since then, CCN and NDN have progressed

in parallel towards similar goals. However, they differ in several key aspects, as described

below.

31

Packet format: NDN interest and data packets are encoded using arbitrary-length TLVs.

This inhibits fast-path packet processing.

Matching: NDN interest-to-data matching is not exact. An interest matches a data packet

if the interest name is a prefix of the data name.

Discovery: As a consequence of LPM-based matching, NDN permits in-network data dis-

covery. NDN consumers are forced to explicitly exclude names they do not wish to

match in an interest. The network must not deliver data which matches one of these

excluded names.

Data authenticity: Public key content digital signatures are mandatory in NDN.

Immutability: Name-to-data bindings in NDN are immutable, meaning that only one name

can map to one data packet.

3.5 Security and Privacy Problems

CCN was designed in part to address several problems of IP-based networks. Content in-

tegrity, confidentiality, availability, access control, and privacy are all paramount to the

success of CCN and other ICN architectures [121, 305]. While CCN addresses some of these

fundamental problems, it comes with its own challenges. In this section, we survey a subset

of open problems.

3.5.1 Content Poisoning

A content poisoning attack is when an attacker, such as a malicious router or producer,

returns fake or invalid data in response to an interest. Fake or invalid content cannot

be authenticated given the associated public key. Use of KeyId and ContentId restrictions

32

is critical for protecting against content poisoning attacks. However, restrictions are only

useful insofar as inputs to the verification process. If a router never caches content, e.g.,

if it does not have a cache and therefore no reason to verify content, or if its throughput

is too high to perform public-key cryptographic operations at line speed, content may be

forwarded without verification. This vulnerability allows so-called on-path attackers to hijack

name prefixes and supply poisoned content in response. Identifying and avoiding on-path

attackers remains an open problem.

3.5.2 Access Control

Unlike modern networks, CCN promotes data security instead of transport security. This

means that sensitive or confidential data must be encrypted. Access control is the mech-

anism by which only authorized consumers are given access to certain content. This is

an application-layer problem since it involves consumer authentication. However, the ex-

act design may have many implications on the network, e.g., encrypting content with an

ephemeral public key will render caches useless. To date, there have been many proposed

techniques; see Chapter 4 for examples. Generally, each proposal differs in how private keys

are distributed to consumers, how consumers obtain keying material necessary to decrypt

per-content encryption keys, cryptographic algorithms used to protect keying material, and

how revocation is handled (if at all). As of yet, there is no access control scheme that can

accommodate all possible use cases.

3.5.3 Privacy

Privacy in CCN is simultaneously better and worse than privacy in IP-based networks. Since

CCN interests do not carry a source address, consumers enjoy some measure of privacy or

deniability. This improves consumer anonymity beyond that in IP-based networks [105, 309].

33

However, CCN forces names to be in the clear so that the routers can operate on them for

forwarding and caching. This can be exploited to correlate requests across consumers [146].

If two consumers request the same content, they issue requests carrying the same name.

Named content can also be exploited to learn when nearby consumers ask for select content

[23]. Specifically, an adversary can use caches as an oracle to determine if content is local.

Given the RTT to the nearest cached copy of some suspect content as well as the RTT to

the authoritative producer, the difference between these two values is close to zero if the

content was not cached, and non-zero otherwise.

Content may also reveal information about its recipient consumer, through the name, or the

producer, through the signature and associated verification information. In general, since

CCN reveals more information to the network, privacy is difficult to define and achieve in

comparison to IP.

3.5.4 Denial of Service

Interest aggregation and content caching provides limited protection against denial-of-service

(DoS). However, this comes at a cost. Stateful forwarding via the PIT is a major DoS vector.

It is trivial for an active and malicious adversary to saturate a PIT with fake or invalid

interests. Since routers cannot distinguish real from fake interests, they must allocate space

in their PIT to store pending interest information. Deterministically protecting CCN routers

and network deployments against this type of attack is an open problem.

Another form of DoS is possible at the forwarding layer. Specifically, if routing updates are

not authenticated, a malicious adversary may fake ownership of a namespace for which they

do not control. Routers may also hijack a namespace and prevent interests from reaching a

34

legitimate producer. Protecting against such attacks is an open problem in the absence of

mandatory signature verification.

35

Chapter 4

Access Control

In this chapter we focus on access control and confidentiality in CCN. Fundamentally, access

control is about restricting access to data to authorized consumers, or principals. (Where

appropriate, we use the terms consumer and principal interchangeably in this chapter.) There

are several dimensions of access control. One protects only sensitive data via encryption.

We call this content-based access control (CBAC). CBAC schemes typically involve offline

principal authentication and authorization, e.g., when obtaining private decryption keys.

Smetters et al. [287] defined the first group-centric CBAC scheme for CCN, based on legacy

CCNx 0.8x [10]. This scheme grants principal groups, which may be composed hierarchically,

access to parts of a content namespace tree. For example, a principal granted access to the

/foo namespace would inherit access to the /foo/bar namespace. Hamdane et al. [164]

proposed a similar scheme scheme based on hierarchical identity-based encryption (IBE)

[65]. Content is encrypted under root namespace keys and becomes accessible to all nodes

under that namespace. Write access is granted by encrypting prefix root keys for select

principals. Zhang et al. [344] proposed another IBE-based access control scheme, wherein

producers use consumer identities, rather than content names, to encrypt content. Misra et

36

/foo
/foo/bar

al. [219, 220] suggested another CBAC scheme based on broadcast encryption [66, 310, 119].

It uses Shamirs secret sharing scheme [281] to distribute content decryption keys. Each share

is encrypted for a broadcast group to form an “enabling block.” Consumers use their private

keys to decrypt these enabling blocks and combine them to recover the content decryption

key. Ion et al. [169] proposed using ciphertext-policy attribute-based encryption (CP-ABE)

[57, 156] for content protection. Principals are associated with attributes, which are used

to encrypt content. To locate authorized content, this scheme includes a routing technique

based on principal attributes. This scheme, as others of the same type, assumes a private key

generator for deriving and distributing principals’ secret keys. Wang et al. [317] proposed a

key-policy ABE (KP-ABE) scheme for access control. By definition, KP-ABE binds access

control policies to keys, thus simplifying policy management as there are fewer keys to

distribute. A hybrid attribute-based scheme was proposed by Li et al. [201, 200]. Content

is encrypted under a random symmetric key, which is then encrypted under some attribute-

based access policy. The encrypted symmetric key then serves as the name of the published

content. A consumer obtains this name by requesting the name of the original data from

the producer. Raykova et al. [261] described an access control system for ICEMAN built

on multi-authority ABE [199]. It allows multiple, non-colluding authorities to issue private

decryption keys. Their design uses standard signatures and ABE for content authenticity and

confidentiality, respectively. Since ICEMAN is a publish-subscribe ICN, content is routed

based on metadata tags associated with the data, selected by the publisher. These are

matched against subscriber interests on a hop-by-hop basis. Attributes are hashed so as to

not leak information about content. (However, this metadata is also a privacy leak, similar

to a CCN name. We discuss this at length in Chapter 5.) At each hop, content is re-signed

to ensure provenance. Thus, consumers must trust every node on the path to the publisher.

In Section 4.1, we describe our variant of CBAC built on proxy-encryption (PRE).

Mangili et al. [211] proposed an access control scheme based on two layers of encryption.

Content is first partitioned and then fragmented. Fragments are encrypted and then coupled

37

with symmetric keys. Whole partitions are encrypted under a different key that is only made

available to authorized principals. Principals obtain doubly encrypted fragments, decrypt

and reassemble them into partitions, and then decrypt the whole partition to obtain the

original content.

Designs discussed thus far differ in many respects, especially with respect to the underlying

public-key encryption scheme. Mannes et al. [212] presented an experimental comparison

of a subset of these designs. Despite performance differences, one commonality is the need

to obtain decryption keys. They may be packaged alongside encrypted content or published

separately as distinct content objects. For the latter case, consumers must discover the

names of these keys. Yu et al. [338] proposed a design that uses name conventions and

NDN longest-prefix-matching (LPM) rules for discovery, called name-based access control

(NAC). Content are encrypted with (randomly generated and symmetric) content encryption

keys, which are then encrypted under key-encrypt keys (KEKs). Key-decrypt keys (KDKs),

used to invert KEK encryptions, are encrypted under consumer public keys and optionally

bound, by name, to policy-specific time windows. Consumers interactively discover content

encryption key and KDK names using NDN-specific LPM rules. Earlier, Kurihara et al. [195]

proposed an alternate access control framework that uses a special type of CCN manifest

to explicitly convey access control information, including key names, to principals. This

generates more keys than NAC, though is arguably more flexible since producers can specify

any type of access control scheme in these manifests. Moreover, it does not rely on in-network

discovery of key names.

Centralized- or proxy-based access control designs represent another variety of content-based

access control. Da Silva et al. [90] proposed using CP-ABE to encrypt content for authorized

parties. Access control policies are encrypted and only visible to trusted proxies. Encrypted

content objects are stored in routers. Proxies authenticate clients and decrypt policies on

their behalf. Revocation is handled by the producer notifying the proxy of changes in access

38

policies. Similarly, Hamdane et al. [163] used a distinct access control manager (ACM)

that controls read and write access to the content namespace. Clients request encryption

and decryption keys from the ACM to modify and read content, respectively. Content

symmetric keys are encrypted with keys granted by the ACM. Access policies are delivered

with content. Clients obtain decryption keys by authenticating themselves and presenting

access policies to the ACM. Aiash et al. [29] constructed an identity-based based access

control scheme for NetInf. This approach requires clients to register with publishers and for

publishers to share their public keys with the NRS, which authenticates clients and provides

“subscriber tokens” to be used when requesting content. Clients obtain content pointers, or

locators, from the NRS. The publisher verifies subscriber tokens by validating them against

the NRS before returning requested content to the subscriber.

Enforcing access control with online authorization checks can also be done alongside, or in

conjunction with, content encryption. Chen et al. [80] proposed an access control mechanism

with in-network assistance. Content is hybrid-encrypted for authorized consumers identified

by their public key. Additionally, producers distribute Bloom Filters (BFs) encoding public

keys of active consumers. Routers use BFs to filter requests from fake or inactive consumers

before they reach the producer. As presented, the design is vulnerable to replay attacks and

BF false positives. In Section 4.2, we propose a stronger interest-based access control (IBAC)

design wherein interests can only be generated by authorized consumers. This makes the

authorization check online and, with router participation, enforceable in the network.

Fotiou et. al. [123] proposed an access control mechanism similar to IBAC wherein access

control enforcement is delegated to a separate, non-caching entity called an access control

provider (ACP). ACPs maintain producer-supplied access control policies. Each content

object has a pointer to a function that determines whether to serve the content to the

requesting consumer. ACPs evaluate this function. Relaying parties store content objects

and are oblivious to access control policies. Similarly, ACPs have no knowledge of consumers

39

requesting content (for privacy purposes); they merely evaluate whether relaying parties

should forward specific content.

More lightweight alternatives have been studied to complement existing content-based access

control schemes using pubic-key encryption. Shang et al. [282] proposed an approach for

access control in constrained environments. Symmetric-key cryptography is used for efficient

device and command authentication. They present a key exchange and management protocol

that derives shares keys. Access control policies are bound to shared keys and expressed

in names. Zheng et al. [346] presented a session-based access control scheme for online

social networks (OSNs) which revolves around separating publicly addressable names and

secret names that only authorized consumers can request. The OSN maintains the mapping

between these types of names and only provides secret (encrypted) names to authorized

consumers. The mapping is changed at regular intervals to minimize correlation between

data and secret names. Renault et al. [265, 266] presented a session-based transport protocol.

Caching nodes require a “security controller” to authorize clients and perform key exchange

(based on, e.g., Diffie-Hellman). The complete protocol includes challenge-response client

authentication and authorization followed by encryption. Wang et al. [327] proposed a so-

called access control system built on mutual authentication. Users register with a content

hosting service, e.g., an OSN. Users interact with the system over sessions, each of which

is associated with a unique key shared with the service. A session is started by logging in

and authenticating oneself to the service. Uploading content requires consumers to encrypt

content with their shared service key. The hosting service then decrypts content and, with a

freshly generated key, re-encrypts it before storage. Consumers obtain content by requesting

it over a session and receiving a unique name for encrypted content, decryption key, and

some additional metadata, all of which are encrypted with a session key.

One critical facet of any access control system is revocation. By and large, existing designs

do not offer a plausible way to deal with this problem since producers have no way to delete

40

content from the network. The problem of unsafe replicas or stale content in CCN was first

addressed by Angius et al. [38]. Analytical and experimental assessment confirmed that:

“...the more frequently content is requested the higher is the chance of one request ending up

in between a revocation and the eviction [of the stale key].” The proposed method relies on

a monotonically decreasing cache lifetime enforced by cooperating routers. This does not

allow a producer to change the lifetime after content is published; it only seeks to minimize

the time window when stale or unsafe replicas can be accessed.

Mauri et al. [217] proposed a mechanism that implements content revocation without input

from the consumer. The proposed approach uses the ccnx-sync protocol to perform OCSP-

like synchronization of key data, i.e., determine content that has been revoked. This requires

proactive behavior by each participating repository and is not distributed. Yu et al. [339]

suggested using ChronoSync [348] to synchronize revoked key endorsements among group

members. Revocation, however, is not the same as cache deletion. Revoked content, if still

cached, can be inadvertently accessed by malicious or benign consumers.

Ishiyama et al. [170] discussed a new caching technique allowing routers to proactively share

content with downstream peers which requested that content. The suggested multicast

forwarding strategy increases the number of replicas in the network. However, unsolicited

content objects can be seen as a form of attack similar to cache poisoning [150].

The concept of cost-aware caching in CCN was introduced in [27, 39, 316, 41, 298]. Various

economic incentives for ISPs and ASes to cache content on behalf of producers have been

explored. Cost-aware routers that cache based on popularity and economic incentives are

studied in [40]. In general, the economic problem of supporting prioritized caching in the

network is addressed without any attention to the inverse problem: how can content be

removed from caches? In Section 4.3, we address this problem, which is also aimed at ad-

dressing access control revocation, with a scheme for best-effort autonomous content deletion

in CCN.

41

4.1 Content-Based Access Control

In this section, we describe PRE-AC, a CBAC system for CCN based on proxy re-encryption

(PRE) [62]. PRE-AC does not rely on trusted content replicas such as CDNs or traditional

PKIs. It also uses an identity-based variant of PRE for intuitive derivation of public keys that

are associated with users and their access rights. Our design has several benefits, including:

• Few keys to store for producers and consumers. Consumers need only store two private

keys associated with their identity – one for identity-based encryption and one for proxy

re-encryption).

• End-to-end content security without sacrificing network caches.

• Support for intermediary content re-encryption on behalf of the consumer.

In Section 4.1.1, we review two PRE schemes: one identity-based construction proposed by

Green and Ateniese [157] and another based on a combination of ElGamal encryption and

Schnorr’s signature scheme proposed by Chow et al. [81]. PRE-AC is described at length

in Section 4.1.2. Results in Section 4.1.3 indicate that the identity-based construction is

significantly cheaper due to the complexity of modular arithmetic operations in the Chow

et al. [81] variant. We describe our proof of concept implementation for CCNx 0.8 [10] in

Section 4.1.4, the legacy open source implementation of CCN.

4.1.1 Proxy Re-Encryption Overview

Proxy Re-Encryption (PRE), first conceptualized by Blaze et al. [62], is a family of crypto-

graphic schemes in which an untrusted proxy is allowed to transform a ciphertext encrypted

under Alice’s public key to one encrypted under Bob’s public key, given an appropriate re-

encryption key. PRE has many practical applications, including: message transfer in secure

42

email systems, fine-grained access control in secure cloud storage, and, most relevant to this

work, improved DRM technologies [157].

Formally, a PRE scheme is a tuple of six algorithms (Setup,KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt)

defined below in general terms for multi-hop schemes. A single-hop scheme only permits a

ciphertext to be re-encrypted at most once. We denote a ciphertext re-encrypted l times as

cl+1. Thus, c1 = c, c2 is the first re-encryption of c, and so on.

• Setup(1k): This procedure takes a security parameter k, which determines the size of

the underlying group in which all operations take place, and outputs the public set of

parameters params. This procedure may also output a master secret key.

• KeyGen(params): Generate and output a public and private key pair. Identity-based

schemes typically specify a particular identity and master key that are used in the

creation of the private key.

• Encrypt(params, pk, m): Encrypt plaintext m ∈ M using the input public key pk (or

identifier) and output the resulting level 1 ciphertext c1
i .

• ReKeyGen(params, pki, pkj): Generate and output a re-encryption key rki→j using the

public parameters and public keys for users i and j.

• ReEncrypt(params, rki→j, c
n
i): Re-encrypt the level n ciphertext cni , which is encrypted

under the public key of user i, to a new level n+1 ciphertext cn+1
j using the re-encryption

key rki→j that may then be decrypted by the secret key of user j.

• Decrypt(params, skj, c
n
j): Parse the level n ciphertext cnj to determine n, decrypt the

ciphertext accordingly using the secret key skj, and output the original plaintext m.

Further distinctions between different PRE schemes can be made based on whether they are

unidirectional or bidirectional. In a unidirectional scheme, a ciphertext originally produced

by Alice and then transformed by the untrusted proxy for Bob cannot be transformed back

to one for Alice. A bidirectional PRE scheme allows transformations to be performed in

both directions. Non-interactivity of a PRE scheme is another important property. A PRE

43

Table 4.1: Comparison of Green et al. [157] and Chow et al. [81] PRE schemes.

PRE Property Identity-Based [157] ElGamal-Schnorr [81]
1. Unidirectional 3 3

2. Non-interactive 3 3

3. Multi-hop 7 7

4. Non-transitivity 3 3

5. Space-optimal 3 3

scheme is said to be non-interactive if re-encryption keys rki→j can be generated without

input or collaboration with user j. Finally, a PRE scheme is space-optimal if it does not incur

additional communication costs, e.g., ciphertext expansion upon re-encryption, in order to

support re-encryption.

Following the breakthrough identity-based encryption scheme from Boneh and Franklin [66],

Green and Ateniese [157] proposed a non-interactive, identity-based, single-hop PRE scheme.

Built upon bilinear maps, the security of this particular scheme depends on the computa-

tional intractability of the Decisional Bilinear Diffie Hellman (DBDH) assumption. It is

CCA-secure in the random oracle model. Many subsequent efforts built on this work, in-

cluding, though not limited to: replicating the scheme without the use of pairings [81],

proving security in the standard model [171], and adding conditions which limit when and

how re-encryption keys may be used [203].

Among these options, we chose two PRE schemes based on their relative performance, flex-

ibility, and security. We prioritized client-side re-encryption and decryption, as this is crit-

ically important for usable access control. Ultimately, we considered two different PRE

constructions – one built on pairings and one built on ElGamal-type cryptosystems. The

identity-based variant of PRE-AC uses the original PRE scheme from Green and Ateniese

[157], which builds upon the construction in [45]. The second variant is based on the work

of Chow et al. [81]. A comparison of the relevant properties for both schemes is shown in

Table 4.1. In the following sections, we provide more details of each variant.

44

Identity-Based PRE Overview

The identity-based PRE scheme (IBP2) from Green and Ateniese [157] is built on a modified

version of Hierarchical Identity-Based encryption from Gentry and Silverberg [138] and the

underlying identity-based encryption scheme designed by Boneh and Franklin [66]. The

public parameters returned from the Setup procedure consist of a group generator g (in

the symmetric pairing case) and element gmsk, where msk is the master secret key, as well

as a tuple of hash functions used in the remaining procedures. Since unique identities

take the place of public keys in identity-based schemes, the KeyGen procedure requires the

public parameters, msk, and a unique identity id to output the corresponding secret key,

skid. Encryption requires only the target recipient’s identity id, public parameters params,

and the actual message m. The ReKeyGen procedure must be performed by the entity in

possession of msk and requires the public parameters params, the source identity idi, and the

destination identity idj. The output of this procedure is the re-encryption key rkidi→idj .

Re-encryption takes the public parameters params, level 1 ciphertext c1
idi

encrypted for the

identity idi, and re-encryption key rkidi→idj as input and outputs a transformed level 2 cipher-

text c2
idj

that is encrypted under the identity of user j. Decryption of this level 2 ciphertext

simply requires the public parameters params, and secret key of the identity idj, skidj .

In this PRE scheme, which works for both symmetric pairinngs G1×G1 → GT and asymmet-

ric pairings G1×G2 → GT , is proven IND-PrID-CCA secure assuming the DBDH assumption

holds in (G1,GT) (resp. (G1,G2,GT)) under the random oracle model. The benefit of this

scheme is that the proxy remains an untrusted party that can perform (public) validity

checks before re-encrypting ciphertext blocks. This prevents a dishonest proxy from acting

as an attacker’s re-encryption oracle.

45

ElGamal-Schnorr PRE Overview

Chow et al. [81] presented one of the few constructions in the literature that does not

rely on pairings. It combines a “hashed” CCA-secure ElGamal-type encryption scheme

with the Schnorr signature scheme using a token-controlled approach to enable single-hop

re-encryption. Much of the scheme is influenced by previous PRE proposals, e.g., [103, 283].

The public parameters consist of a generator g for the group G ⊂ Z∗q, where the number of

bits in q is equal to the security parameter κ, two parameters l0 and l1 which are polynomial

in κ (for a message space that is l0 bits), and a set of hash functions. The consumer key

pairs consist of a pair of secret keys ski,1,ski,2 and public keys pki,1 = gski,1 ,pki,2 = gski,2 . The

ReKeyGen operation generates a conversion key rki→j used to mask the original ciphertext

encrypted with the secret keys of entity i to one that may be decrypted with only the secret

key skj,2 of entity j. The construction of level 1 and 2 ciphertexts are publicly verifiable and

delegator-safe, which means that the proxy may generate level 2 ciphertexts after verifying

input level 1 ciphertexts without revealing or relying upon the secret keys of either party

involved in the transformation. Finally, the Decrypt procedure for a level 2 ciphertext for

user j extracts the information necessary to unmask the original plaintext using their secret

key skj,2 and outputs the message if the final verification step passes, or nothing otherwise.

4.1.2 PRE-AC System Design

In this section we describe the reference architecture for PRE-AC, illustrated in Figure 4.1.

Although our presentation is framed in the context of the previously described identity-based

PRE scheme, it is general enough to work with any suitable PRE construction. Moreover,

it can be used by any CCN application.

46

P

R

R

R

R

R

R

R

C

C

C

C

CCN Router Mesh

(Content Sharing)

Producer

(Encrypt Once)
Consumers

(Decrypt Many Times)

End-to-End Protection

Figure 4.1: PRE-AC deployment

4.1.3 PRE-AC Protection

One naive way to use PRE for access control would be to individually protect all content with

PRE using content names, i.e., encrypt C(N) with N as the public identity. The producer

would be the only entity that can generate and store the corresponding secret key for N .

Thus, content remains secure as it moves through the network. This design consists of an

offline and online phase. The offline phase configures the producer and each consumer with

the appropriate cryptographic information, i.e., PRE public parameters and consumer secret

keys. The online phase handles the distribution of content. For brevity, we omit the details

of the setup phase as they can be implemented in a variety of ways, such as during software

installation or device fabrication. When a consumer wishes to use the content they would

need to request a corresponding re-encryption key from the producer. If privacy in terms of

content-to-user linkability is a concern, the interest to request the key and and corresponding

content could also be encrypted using the public keys of the producer and the consumer,

respectively.

47

After receiving the re-encryption key, the consumer could re-encrypt the content. In the

event the consumer is compromised and the original or transformed content are made publicly

available, only the producer who owns the master secret key or the consumer who possesses

the secret key for the transformed ciphertext may decrypt the content. Therefore, disclosure

of encrypted content is safe.

To assess the feasibility of this fully PRE-based design, we implemented the PRE schemes

discussed in Section 4.1.1. The identity-based scheme was implemented using the Java

Pairing Based Cryptography library [97], and the ElGamal-Schnorr scheme was implemented

using standard modular arithmetic operations provided by the Java BigInteger class. We

instantiated each scheme with security parameters of similar strength: 256 bits for elliptic

curve groups and 3072 bits for the Diffie Hellman groups, both of which are approximately

providing 128 bits of security. We then measured Encrypt, ReKeyGen, ReEncrypt, and Decrypt

procedure times (for level 2 ciphertexts only). Figure 4.2 shows our performance results

(without pairing pre-computations) on a machine with an Intel(R) Core(TM) i5-3427U CPU

operating at 1.80GHz with 8GB of main memory and using Ubuntu 14.04. The large security

parameter needed to attain equivalent strength lead to worse performance than the identity-

based scheme in our implementation. Despite the clear difference in performance, neither is

practical for large digital media, such as movies or music albums that are MBs or GBs in

size. This performance impediment led us to consider a hybrid encryption approach, wherein

we use PRE to protect a symmetric key for efficient content encryption and decryption.

The flow of messages during the online phase are shown in Figure 4.3. This figure depicts

the flow of traffic required to retrieve a piece of content C(N) by two different consumers.

The params argument is omitted from all PRE-related procedures for brevity. Also, we refer

to a content tuple (C(N)′, k′) as a piece of content encrypted with a symmetric key k and

the encryption of k with PRE. As an optimization, consumers may fetch re-encryption keys

in parallel with encrypted content, contrary to what is shown in Figure 4.3. This enables a

48

0 5000 10000 15000 20000 25000 30000 35000
Plaintext Size [B]

0

50000

100000

150000

200000

Ti
m

e
(m

s)

Identity-Based
ElGamal-Schnorr

(a) Encrypt time comparison

0 5000 10000 15000 20000 25000 30000 35000
Plaintext Size [B]

0

20000

40000

60000

80000

100000

120000

Ti
m

e
(m

s)

Identity-Based
ElGamal-Schnorr

(b) ReKeyGen time comparison

0 5000 10000 15000 20000 25000 30000 35000
Plaintext Size [B]

0

25000

50000

75000

100000

125000

150000

175000

Ti
m

e
(m

s)

Identity-Based
ElGamal-Schnorr

(c) ReEncrypt time comparison

0 5000 10000 15000 20000 25000 30000 35000
Plaintext Size [B]

0

50000

100000

150000

200000

250000
Ti

m
e

(m
s)

Identity-Based
ElGamal-Schnorr

(d) Decrypt time comparison

Figure 4.2: PRE-AC procedure performance

consumer start to decrypt chunks of the content without waiting to retrieve content in its

entirety.

The details of the hybrid encryption procedures are captured in algorithms 1, 2, and 3. These

list the explicit steps required for the Encrypt and ReKeyGen procedures in the producer

and the ReEncrypt and Decrypt procedures in the consumer. Enc(·, ·) and Dec(·, ·) refer

to symmetric-key encryption and decryption, respectively. Also, skA is the secret key for

49

CrA

CrB

R P

I(N) - I(N) -

C(N) = Encrypt(D(N))

C(N)
�

Cache C(N)
C(N)�

Payload := Enc(pkP , (AID, N)

I(Nkey) := (N, Payload)

I(Nkey) - I(Nkey) -

(AID, N) = Dec(skP , C(N))

rkA = ReKeyGen(N,AID)

C(Nkey) = rkA

C(Nkey)�

Cache C(Nkey)
C(Nkey)�

I(N) -

C(N)�

Payload := Enc(pkP , (BID, N)

I(Nkey) := (N, Payload)

I(Nkey) - I(Nkey) -

(BID, N) = Dec(skP , C(N))

rkB = ReKeyGen(N,BID)

C(Nkey) = rkB

C(Nkey)�

Cache C(Nkey)
C(Nkey)�

Figure 4.3: PRE-AC control retrieval flow

50

consumer A generated from the (offline) KeyGen procedure. AID and BID are the identities

of the two consumers.

Algorithm 1 PRE-AC Encrypt

Require: N, κ, params
Ensure: C(N)′, k′

1: k
$← {0, 1}κ

2: C(N)′ ← Enc(k, C(N))
3: k′ ← Encrypt(params, N, k)
4: return (C(N)′, k′)

Algorithm 2 PRE-AC ReKeyGen

Require: N, params, A
Ensure: Re-encryption key from N to A

1: skN ← KeyGen(N, params)
2: rkN→A ← ReKeyGen(params, skN , N,A)
3: return (rkN→A)

Algorithm 3 PRE-AC ContentDecrypt

Require: params, skA, rkN→A, (C(N)′, k′)
Ensure: Content C(N)

1: k′′ ← ReEncrypt(params, rkN→A, k
′)

2: k ← Decrypt(params, skA, k
′′)

3: C(N)← Dec(k, C(N)′)
4: return C(N)

As an added note, PRE-AC assumes the producer is always available to generate a re-

encryption key. However, as argued in [219], this may not always be true. When the producer

is offline, the re-encryption key cannot be obtained. One way around this problem would

be to introduce trusted intermediary nodes, e.g., content repositories, between the producer

and consumers that proactively generate re-encryption keys on behalf of consumers. In the

event that the producer falls offline, the consumer can still obtain their content re-encryption

key from one of these intermediary nodes. This requires consumer identities to be sent in

the clear (instead of encrypted). Thus, this particular enhancement may harm consumer

privacy.

51

4.1.4 Prototype Implementation

To assess the correctness and implementation efficiency of the proposed architecture, we

developed and tested a prototype implementation of PRE-AC as presented in Section 4.1.3.

We used the legacy Java CCNx framework [10] which, as of this writing, is now deprecated.

In the implementation, there is a single content producer and multiple consumer processes

that are spawned with a running instance of ccnd, the daemon process that implements the

CCN protocol at the network layer in the CCN stack. Prior to initializing these processes,

the public parameters used in the PRE scheme are generated and saved to persistent storage,

i.e., a file on disk. When the producer process is started, it first reads the public parameters

and initializes the rest of the internal components needed for PRE functions, registers the

/p/ prefix, and waits for incoming interests from consumers. Consumer processes also utilize

the same public parameters to initialize the PRE functions.

The remaining five steps in the identity-based PRE scheme – KeyGen, Encrypt, ReKeyGen,

ReEncrypt, and Decrypt – are performed online between the consumer and the producer

processes. Each consumer process requests a single piece of content from the producer,

writes the content to disk, and then terminates upon completion. To accomplish this simple

task, the consumer and producer complete the set of interactions below.

1. The consumer process requests its secret key in the PRE scheme corresponding to their

identity, which is stored internally as a byte array, by encoding the byte array into a

Base64 string AID that is CCN URL-friendly. The consumer builds and issues an

interest with the name /p/sk/AID. Upon receipt, the producer decodes the consumer

identity and then runs KeyGen with the encoded identity to construct a secret key skA.

Finally, the producer encrypts the raw bytes of skA using the identity of the consumer

and then sends the resulting ciphertext downstream.

52

2. The consumer encodes the target content name N as a Base64 string N and then builds

and issues the interest /p/media/N . Upon receipt, the producer decodes the content

name N as the last name segment and performs the following check. If a file with the

name N exists, the contents of the file are read and encrypted in chunks using the PRE

Encrypt function and then returned downstream.1

3. The consumer creates a tuple (AID, N), serializes it to a byte array, encrypts the byte

array using the identity of the producer, encodes the corresponding ciphertext into a

Base64 string C, and finally, builds and issues the interest /p/rkey/C. The producer

then decodes C from the interest, decrypts the ciphertext using their secret key, and

then deserializes (AID, N). The producer then runs ReKeyGen to generate rkN→A,

encrypts the raw bytes of the key using the identity of the consumer, and returns the

result to the consumer.

4. The consumer finishes the transaction by using the re-encryption key to re-encrypt the

encrypted piece of content using the PRE ReEncrypt procedure, and then decrypts the

content using their secret key skA.

Note that we omitted consumer authentication during for the first step as it will happen only

once when a user first registers to the system. Authentication in later steps are unneeded as

only the intended consumer can decrypt the content with its private key.

4.2 Interest-Based Access Control

In this section, we propose Interest-Based Access Control (IBAC), an alternative technique

for implementing access control in CCN [141]. It is based on interest name obfuscation and

1If the name N does not match the name of a file, then the producer treats the bytes of N as an unsigned
integer n and generates n random bytes to be encrypted and returned to the consumer to generate synthetic
traffic.

53

authorized disclosure. Name obfuscation hides the target of an interest from eavesdroppers.

As mentioned by Jacobson et al. [172], name obfuscation has no impact on the network since

routers use only the binary representation of a name when indexing into PIT, CS, and FIB.

As long as producers generate content objects with matching names, the network can seam-

lessly route interests and content objects with obfuscated names. However, interests with

obfuscated names must contain routable prefixes so that the interests can still be forwarded

from consumers to the producers. In other words, only a subset of name segments, e.g., the

suffix of the name, can be obfuscated.

Another goal of name obfuscation is to prevent unauthorized users from creating interests

for protected content. In other words, if a particular consumer Cr is not permitted to access

content with name N , Cr should not be able to generate N ′ = f(N), where f(·) is some

obfuscation function that maps N to an obfuscated name N ′. Possible obfuscation functions

include keyed cryptographic hash functions and encryption algorithms. We explore both

possibilities in this section.

Authorized disclosure is the second element of IBAC. This property implies that any entity

serving content must authorize any interest for said content before it is served. This is

necessary for IBAC since interests may be easily replayed by an adversary. In this context,

authorization is necessarily coupled with authentication so that the entity serving the content

can determine the identity of the requesting consumer. Therefore, consumers must provide

sufficient authentication information, e.g., via an interest signature. Thus, to implement

authorized disclosure (in the presence of router caches), any entity serving content must (a)

possess the information necessary to perform authentication and authorization checks and

(b) actually verify the provided authentication information. This issue is discussed at length

in Section 4.2.3. Observe that disabling all content caching defers authorized disclosure

checks to producers. In this case, all interests will be forwarded to producers that posses the

54

information needed to perform these checks. However, by itself, prohibiting content from

being cached is not a form of access control and reduces the efficacy of content retrieval.

IBAC may be used alongside CBAC to conceal both the name and the payload of content.2

However, using IBAC in isolation is advantageous in scenarios where content payloads may

need to be modified by an intermediary service, e.g., a media encoding application or proxy.

In this case, content encryption prevents such modifications by services or applications be-

sides the producer.

The main contributions of IBAC are:

• Architectural modifications to support IBAC without diminishing caching benefits.

• A mutual trust scheme wherein routers can verify whether consumers are authorized

to access cached content.

• A security analysis of IBAC.

• Evaluation of router performance overhead when serving content via IBAC compared

to publicly accessible content.

4.2.1 Threat Model

Let U(N) denote the set of authorized consumers for content with name N generated and

controlled by producer P , and let Ū(N) be the set of all unauthorized consumers. Let

Path(Cr, P) be the set of all routers on the path between the consumer Cr ∈ U(N) and P .

We first assume the existence of an adversary A who can deploy and compromise any router

R /∈ Path(Cr, P).3 To keep this model realistic, we assume that the time to mount such

2As we will discuss, IBAC does not replace CBAC. It is a complementary form of access control.
3Any one of these actions can be performed adaptively, i.e., in response to status updates or based on

observations.

55

an attack is non-negligible, i.e., longer than the average RTT for a single interest-content

exchange. Table 4.2 summarizes the notation used in the rest of this section.

Formally, we define A as a 3-tuple: (PA \ {P}, CA \ U(N),RA \ Path(Cr, P)) where the

components denote the set of compromised producers, consumers, and routers, respectively.

If A controls a producer or a consumer then it is assumed to have complete and adaptive

control over how they behave in an application session. Moreover, A can control all of the

timing, format, and actual information of each content through compromised nodes and

links.

Let Guess denote the event where A correctly recovers the obfuscated form of a content

name. Let Bypass denote the event where A successfully bypasses the authorization check

for a protected content object. We define the security of an IBAC scheme with respect to

these two events as follows.

Definition 4.1. An IBAC scheme is secure, but subject to replay attacks, if Pr[Guess] ≤ ε(κ)

for any negligible function ε and a security parameter κ.

Definition 4.2. An IBAC scheme is secure in the presence of replay attacks, if Pr[Guess +

Bypass] ≤ ε(κ) for any negligible function ε and a security parameter κ.

Replay attacks are artifacts of the environment when a CCN access control scheme is de-

ployed. In other words, in networks where links are insecure, passive eavesdroppers can

observe previously issued interests and replay them. Consequently, these attacks are consid-

ered orthogonal to the security of the underlying obfuscation scheme used for access control.

The authorized disclosure element of IBAC is intended to prevent such replay attacks.

To justify our adversarial limitation to off-path routers, consider the following scenario. If

A can compromise a router R ∈ Path(Cr, P), then A can observe all content that flows

along this path. Therefore, we claim that on-path adversaries motivate CBAC. Moreover,

56

we exclude adversaries capable of capturing interests and replaying them in other parts of

the network – see Section 4.2.3 for details.

Table 4.2: Relevant IBAC notation.

Notation Description

A Adversary

Cr Consumer

P Producer

prefix Producer prefix

N Content name in cleartext

N ′ Obfuscated content name

I(N) Interest with name N

C(N) Content object with name N

ID(·, ·) Key identifier function

f(·) Obfuscation function

enc(·, ·), dec(·, ·) Symmetric-key encryption and
decryption function

Enc(·, ·),Dec(·, ·) Public-key encryption and
decryption function

H(·) Cryptographic hash function

U(N) Set of authorized consumers

Gi Access control group i

kGi Obfuscation key of group Gi

pksGi , sk
s
Gi Public and private signing key pair

associated with group Gi

κ Global security parameter

C Set of all content objects

r, t nonce and timestamp

B Nonce hash table

4.2.2 Name Obfuscation Variants

Recall that the intuition behind IBAC is that if consumers are not allowed to access certain

content, they should not be able to issue a “correct” interest for it. Specifically, only a con-

sumer Cr ∈ U(N) should be able to derive the obfuscated name N ′ of an interest requesting

content with name N provided by producer P . In this section, we discuss two types of name

obfuscation functions: (1) encryption and (2) hash functions.

57

Encryption-Based Name Obfuscation

Let Enc(k,N) be a deterministic encryption function which takes as input a key k ∈ {0, 1}κ

and an arbitrary long non-empty binary name string N , and generates an encrypted name

N ′. Let Dec(k,N ′) be the respective decryption function. With encryption, the goal is for

authorized clients to encrypt segments of a name so that the producer can perform decryption

to identify and return the appropriate content object.4 Obfuscation is based on knowledge

of the encryption key and the content name under IBAC protection. In other words, even if

an adversary knows N , it cannot generate N ′ since it does not possess the appropriate key.

To illustrate encryption-based obfuscation, assume Cr uses k to generate N ′ as N ′ =

Enc(k,N). P then recovers N as N = Dec(k,N ′) to identify the content object in ques-

tion and returns it with the matching name N ′ (not N). We prove the safety of this scheme

below.

Theorem 4.1. The IBAC scheme without authorized disclosure is secure, but subject to re-

play attacks, against A if an indistinguishably-secure (IND-secure) deterministic encryption

algorithm is used for name obfuscation.

Note: IND security is typically identical to CPA security in the public-key setting since

the adversary is assumed to have access to the public key [181]. In this case, neither the

encryption nor decryption key is known to A.

Proof. Let Π = (Gen,Enc,Dec) be an IND-secure (deterministic) encryption scheme consist-

ing of three probabilistic polynomial time algorithms Gen, Enc, and Dec for key generation,

encryption, and decryption, respectively. Let ke and kd be the encryption and decryption

keys produced by Gen. For any interest name N , it holds that Dec(kd,Enc(ke, N)) = N .

Let A be any probabilistic polynomial adversary. The definition of the eavesdropping in-

4Recall that a cleartext name prefix is needed to route the interest to the intended producer.

58

distinguishability experiment, adapted for plaintext interest messages, denoted Expind
A,Π, is as

follows:

1. A is given input 1κ and outputs a pair of interest names N0 and N1, and ke and kd are

computed by running Gen(1κ).

2. A single bit b ← {0, 1} is chosen uniformly at random. The challenger computes the

ciphertext c← Enc(ke, Nb), which is given to A.

3. A outputs a single bit b′.

4. The output of the experiment is said to be 1 if b′ = b and 0 otherwise.

Let Expind
A,Π(κ, b) be the same experiment run but where bit b is given as an input value. By

the definition of IND-security, it follows that

|Pr[Expind
A,Π(κ, 1) = 1]− Pr[Expind

A,Π(κ, 0) = 1]| ≤ ε(κ),

for some negligible function ε. Recall that Guess is the event that A correctly guesses the

obfuscated version a content name. The probability of A decrypting a message is at least

Pr[Guess]. Therefore, the event when A successfully guesses the obfuscated version of the

name, is when A outputs b′ = 1 when b = 1 and b′ = 0 when b = 0. Thus,

Pr[Guess] = |Pr[Expind
A,Π(κ, 1) = 1]− Pr[Expind

A,Π(κ, 0) = 1]| ≤ ε(κ)

This concludes the proof.

Supporting Multiple Access Groups: Thus far, we assumed that name encryption

(obfuscation) keys are known to all authorized consumers in U(N). However, this might not

be the case in practice. P might provide content under IBAC to several access groups each

59

with different privileges.5 Specifically, consumers in groups Gi(N) ⊂ U(N), for i = 1, 2, . . . ,

might be allowed access to different resources. Therefore, several obfuscation keys, one for

each group, should be utilized. For notation simplicity, we refer to Gi(N) as Gi. Note that in

an extreme scenario, each group would only contain a single consumer, i.e., each individual

consumer has a unique key used to access the content in question.

To decrypt the obfuscated name N ′, P must identify the obfuscation key used to generate N ′.

This can be achieved if such consumers specify an identifier for the key used in the interest.

Such an identifier could simply be the digest of the obfuscation key, i.e., IDGi = H(kGi),

where kGi is Gi’s encryption key. IDGi can then be included in the interest payload.

Recall that CCN interest messages, by design, do not carry any source information, which

provides some degree of anonymity. However, including IDGi enables interest linkability by

eavesdroppers (malicious or not). In other words, IDGi can reveal the access group identities

to which consumers belong, but not the identities of the consumers themselves. If this

linkability is an issue for applications, H(kGi) can be encrypted using P ’s public key pkP in

the form IDGi = Enc(pkP ,H(kGi)).
6 Note that for two identifier values of the same group, i.e.,

with the same k, to be indistinguishable, Enc(·, ·) must be secure against chosen plaintext

attacks [181].

Hash-Based Name Obfuscation

Let H(k,N) be a keyed cryptographic hash function. The obfuscated name N ′ can be

generated as N ′ = H(k,N) for some key k ∈ {0, 1}κ. Since hash functions are one-way,

producers must maintain a hash table that maps obfuscated names to the original content

5We assume that each content object is only accessible by a single access group. However, this assumption
will be relaxed later.

6Since a consumer cannot be expected to know the router from which content will be served, it is not
plausible for them to encrypt these IDs with the public key of a (set of) router(s).

60

name, i.e., M : N ′ = H(k,N)→ N for all deployed keys.7 In the worst case, the size of this

hash table is O(|K| × |C|), where K is the set of all keys and C is set of all content objects

generated or published by P under IBAC protection. This approach provides the same

security properties of encryption-based name obfuscation. Moreover, for long names with

suffixes longer than the hash function output size, this approach reduces obfuscated interest

size. However, it incurs additional computation overhead and storage at the producer. Thus,

while keyed hash functions are viable for name obfuscation, deterministic encryption is a

better approach.

4.2.3 Security Considerations

In this section we discuss the security of IBAC with respect to the adversary model described

in Section 4.2.1.

Replay Attacks

Regardless of the obfuscation function, both IBAC schemes are susceptible to replay attacks.

This is because both are deterministic. Therefore, an eavesdropper A ∈ Ū(N) could issue an

interest with a captured N ′ and receive the corresponding content under IBAC protection

from either the producer or a router cache. In other words, the same “feature” that makes it

possible for authorized consumers to fetch IBAC-protected content from router caches also

makes it susceptible to replay attacks.

Replay attacks are problematic in many access control systems. Standard countermeasures

include the use of random, per-message nonces or timestamps. Nonces help ensure that each

message is unique, whereas timestamps protect against interests being replayed at later points

7Producers do not have to keep hash tables for all possible keys of size κ, only tables of keys used by
producers and issued to access groups.

61

in time. Thus, to mitigate replay attacks, we use both nonces and timestamps. In particular,

each consumer Cr ∈ U(N) must issue an interest with (1) name N ′, (2) a randomly generated

nonce r, and (3) a fresh timestamp t. The reason why we use both nonces and timestamps is

to allow for loosely synchronized clocks and unpredictable network latencies. Note that if (1)

clocks of consumers, producers, and involved routers in IBAC can be perfectly synchronized,

and (2) network latencies can be accurately predicted, only timestamps are sufficient for

replay detection. Moreover, since nonces and timestamps serve a purpose which is orthogonal

to content identification and message routing, they are included in the interest payload.

Consumer nonces are random κ-bit values. If a router receives a duplicate nonce, it can drop

the corresponding interest. Let w be a time window associated with authorized content.8

To determine if a duplicate nonce was received, producers (or caches) must maintain a

collection of nonces for each such content to prevent replay attacks. Timestamps themselves

are not stored, they are only used to determine if the received interest is issued within the

acceptable time window w. Once this time window elapses, all stored nonces are erased and

corresponding content is flushed from the cache.

Although using nonces and timestamps allows detection of replayed interests, A capturing

interests can still use their obfuscated names N ′ to fabricate another interest with legitimate

r and t values. Therefore, we also stipulate that r and t should be authenticated via a

digital signature, σ, which should be included in the interest payload. In order to bind r

and t to their corresponding interest, N ′ is included in the signature computation. Signature

generation and verification is performed using public and private key pairs associated with

each access group Gi. Collectively, interest payloads take the following form:

(
IDGi , r, t, σ = SignsksGi

(N ′||IDGi ||r||t)
)

8 Determining the proper value of w is outside the scope of this work. However, a logical approach is for
routers to use the lifetime of authorized content as w.

62

where IDGi is the identity of group Gi, and sksGi is a signing key distributed to all consumers

in Gi. To verify σ, the matching public key pksGi is needed. For the remainder of this

section, we use the term authorization information to refer to all information included in

interest payloads for the purpose of supporting IBAC.

One alternative to digital signatures are keyed hashes or Message Authentication Code func-

tions, e.g., HMAC [193]. In this case, consumers and routers would need to share the key

used in the HMAC computation. This means that either consumers or producers need to

distribute keys to all involved routers. This is problematic for two reasons: (1) compromis-

ing routers exposes shared keys, and, more importantly, (2) Cr must securely share pairwise

keys with all routers on Path(Cr, P). Regardless of the distribution method, this incurs extra

overhead and complexity compared to simply including, in cleartext, signature verification

(public) keys in content objects.

Finally, consider the following scenario where two routers R1 and R2 cache content object

C(N ′) which is under IBAC protection. Assume that consumer Cr requests C(N ′) by sending

an interest I(N ′) with valid authorization information that includes r and t. Assume that

I(N ′) is satisfied from R1’s cache. At the same time, A, an eavesdropper between Cr and

R1, records I(N ′). A can replay I(N ′) to R2 and receive C(N ′) from the cache since routers

do not synchronize stored nonces. Therefore, there is no way for R2 to know that r and

t were already used at R1. One way to address this problem is for routers to share nonce

lists for each content under IBAC they serve from cache. For this method to be effective,

such nonces lists need to be securely shared with every single router in the network. This

may be infeasible in large networks such as the Internet. Another approach is to have more

accurately synchronized clocks, thereby allowing a smaller replay time window.

63

Authorized Content-Key Binding Rule

Although the aforementioned method for generating authorization information mitigates

replay attacks, it also raises several questions. First, how does a router efficiently verify the

signature in interest payloads? Second, if a router can obtain the key(s) necessary to verify

this signature, how does it determine if such key(s) can be trusted?

To address these questions we propose a mutual trust framework for authorized disclosure.

Ghali et al. [150] first studied trust in NDN, and ICNs in general, as a means of preventing

content poisoning attacks [142, 137]. Even if routers can verify content signatures before

replying from their cache, it does not mean that said content is actually authentic. Ghali et

al. observed that this verification process requires trust in public (verification) keys that is

only known to applications. Consequently, all interests must supply either (1) an identifier

of the public verification key (KeyId), or (2) unique content identifier (ContentId). In effect,

interests reflect the trust context of the issuing consumer in a form enforceable at the network

layer. This framework can be viewed as one-way trust of content by routers. We extend this

framework to allow producers to distribute information about authorized consumers, which

can also be enforceable at the network layer. This allows routers to make trust decisions

about individual interests.

Recall that in order for routers to verify which interests are authorized to access cached

content protected under IBAC, the signature must be verified. To achieve this, producers

should include the appropriate verification key with each IBAC-protected content object. To

better understand this, assume the following scenario. Consumer Cr ∈ Gi, for Gi ⊂ U(N),

requests content with name N by issuing an interest with obfuscated name N ′, and IDGi ,

r, t and σ as described in Section 4.2.3. Assume that the matching content is not cached

anywhere in the network. Once this interest reaches the producer P , the latter verifies σ and

64

replies with the content that also includes key pksGi .
9 Router R will then cache pksGi along

with the content itself. Once another interest for N ′ is received, R uses the cached pksGi to

verify σ and returns the corresponding cached content.

We capture this with the following policy, called the Authorized Content-Key Binding

(ACKB) rule:

ACKB: Cached content protected under IBAC must contain the verification key associated

with the authorization policy.

Algorithm 4 Interest generation

1: INPUT: routable prefix, N , kGi , pk
s
Gi , sk

s
Gi , κ

2: IDGi ← H(kGi)
3: N ′ ← /routable prefix/f(kGi , Suffix(N, routable prefix))

4: r
$←− {0, 1}κ

5: t← CurrentTime()
6: σ ← SignsksGi

(N ′||IDGi ||r||t)
7: Payload := (IDGi , r, t, σ)
8: return I(N ′) := (N ′, Payload)

Algorithm 5 Content generation

1: INPUT: I(N ′) := (routable prefix, N ′, Payload)
2: (IDGi , r, t, σ) := Payload

3: pksGi ← LoopupVerificationKeyForID(IDGi)
4: if VerifypksGi

(σ) then

5: keGi ← LookupDecryptionKeyForID(IDGi)
6: N ← Dec(keGi , Suffix(N ′, routable prefix))
7: data← RetrieveContent(N)
8: return C(N ′) := (N ′, data, pksGi)
9: else

10: Drop I(N ′)

The protocol for IBAC-protected content retrieval relies on this rule. Algorithms 4 and

5 outline the interest and content object generation procedures. Note that the function

Suffix(N, routable prefix) returns all name segments ofN except the ones included in routable prefix.10

Also, the router verification procedure is outlined in Algorithm 6. If this procedure returns

9The content object signature must also be computed over pksGi
to bind it to the message.

10For instance, Suffix(/edu/uci/ics/home.html, /edu/uci/) would return ics/home.html.

65

Algorithm 6 Router authorization check

1: INPUT: I(N ′), cached C(N ′), B
2: (IDGi , r, t, σ) := Payload

3: (N ′, ·, pksGi) := C(N ′)
4: if B[N ′] contains r then
5: Drop I(N ′); return Fail
6: else
7: if Timestamp t is invalid then
8: Drop I(N ′); return Fail
9: else

10: if VerifypksGi
(σ) then

11: B[N ′] := B[N ′] ∪ r
12: return Pass
13: else
14: Drop I(N ′); return Fail

Pass, then the content object found in the cache is forwarded downstream to the associ-

ated interface. Note that Algorithms 4, 5, and 6 use obfuscation key kGi and signing key

pairs (pksGi , sk
s
Gi). For completeness, a complete sequence diagram showing multiple interest-

content exchanges is shown in Figure 4.4. Both consumers belong to the same access group,

i.e., Cr1, Cr2 ∈ Gi.

We now prove that this variant of IBAC – with authorized disclosure – is secure in the

presence of replay attacks.

Theorem 4.2. The IBAC scheme with authorized disclosure is secure, in presence of re-

play attacks, against A if an indistinguishably-secure (IND-secure) deterministic encryption

algorithm is used with an existentially unforgeable signature scheme.

Proof. In Theorem 4.1, we proved that Pr[Guess] ≤ ε(κ). It is easy to see that the additional

Payload information – the random nonce, timestamp, and signature – are all distinct for

each interest. Therefore, including this information leaks no information that improves the

adversaries advantage or improves Pr[Guess].

66

Cr1 ∈ Gi

Cr2 ∈ Gi

R P

IDGi ← H(kGi)

N ′ ← /prefix/Enc(kGi
,Suffix(N, prefix))

r1
$←− {0, 1}κ, t1 ← CurrentTime()

σ ← SignsksGi

(N ′||IDGi ||r1||t1)
payload := (IDGi , r1, t1, σ)

I(N ′)1 := (N ′, payload) -
I(N ′)1 := (N ′, payload) -

pksGi
← LoopupVerificationKeyForID(IDGi

)

VerifypksGi

(σ)

kGi
← LookupDecryptionKeyForID(IDGi

)

N ← Dec(kGi
,Suffix(N ′, prefix))

data← RetrieveContent(N)

C(N ′) := (N ′, data, pksGi
)�

Cache C(N ′)

C(N ′) := (N ′, data, pksGi
)�

IDGi ← H(kGi)

N ′ ← /prefix/Enc(kGi ,Suffix(N, prefix))

r2
$←− {0, 1}κ, t2 ← CurrentTime()

σ ← SignsksGi

(N ′||IDGi ||r2||t2)
payload := (IDGi , r2, t2, σ)

I(N ′)2 := (N ′, payload) -

VerifypksGi

(σ), r2 and t2

C(N ′) := (N ′, data, pksGi
)�

Figure 4.4: IBAC content retrieval flow

67

We now assess Pr[Bypass]. Recall that this event occurs when A bypasses the authorization

check at a router to recover content from a cache. Without knowledge of sksGi , this only occurs

if A is able to forge the Payload signature. By definition of the existentially unforgeable

signature scheme, A is not able to generate an input set (N̂ ′, ˆIDGi , r̂, t̂) 6= (N ′, IDGi , r, t) such

that VerifypksGi
(σ̂) occurs with non-negligible probability. Thus, Pr[Bypass] ≤ ε(κ). Finally,

since the sum of two negligible probabilities is also negligible, then Pr[Guess+Bypass] ≤ ε(κ)

.

Serving Content to Multiple Access Groups

One problem with encryption-based name obfuscation occurs when a content object with

name N is accessible by different groups. According to Algorithms 4 and 5, the obfuscated

nameN ′ contains a suffix encrypted with keys associated with each access group. Therefore, a

single content object might have several names depending on the number of groups authorized

to access it. Since routers use exact matching for cache lookup11, several copies of the same

content could possibly be cached.

To address this problem, content objects should have the exact same name regardless of

access control groups permitted access. This can be achieved using the hash-based name

obfuscation function described in Section 4.2.2. However, per the ACKB rule, cached content

needs to contain every authorization signature verification key that could be used to access

said content. In other words, producers need to provide all possible public keys that can be

used to access the content under IBAC protection. Consider the following: a content object

C(N) is accessible by two access groups Gi and Gj. In this case, the producer needs to

provide both pksGi and pksGj with C(N ′), i.e.,

C(N ′) := (N ′, data, pksGi , pk
s
Gj)

11In CCN, not in NDN.

68

Whenever R caching C(N ′) receives an interest issued by a consumer in any authorized access

group, R uses the group identity included in the Payload field to determine σ’s verification

key.

Note that content object sizes might increase significantly depending on how many groups

are allowed access. We do not discuss this issue further, since the trade-off between having

multiple cached versions of the same content and having longer content objects carrying all

verification keys is ultimately the application’s decision.

IBAC Variations

We do not claim that any IBAC variation discussed above is superior to another. Each has

its own strengths and weaknesses. However, to help determine which variation to use, we

make the following claims based on the application needs and assumptions. Note that some

claims provide privacy as well as access control.

1. If replay attacks are not a concern, then consumers only need to use a name obfuscation

function and include their group identity in the Payload.

2. If replay attacks are plausible and name privacy is a concern, then name obfuscation

must be used and authorization information, as described in Section 4.2.3, must be

included in interest payloads.

3. If replay attacks are plausible but name privacy is not a concern, then only authoriza-

tion information is sufficient.

Claim 3 might seem counterintuitive with the idea of IBAC. Recall, however, that router

authorization checks prevent unauthorized consumers from retrieving cached content under

IBAC protection. Even if content name is not obfuscated, A cannot forge payload autho-

rization information, and therefore cannot violate IBAC protection guarantees.

69

Revocation

Generally speaking, revocation is a challenge in all access control schemes involving secrets

shared among group members. Recall that all consumers belonging to the same access control

group in IBAC share the same obfuscation keys. If one of them leaves the group12, the

producer must generate a new key and distribute it to all remaining authorized consumers.

We will not discuss this issue further since we believe it is not part of the core access control

protocol.

Moreover, cached content may be accessed by revoked consumers. Assume C(N) is IBAC-

protected and cached in R. Assume Cr, connected (directly or indirectly) to R, is authorized

to access C(N). While C(N) is cached, Cr’s access is revoked. At the same time, the

latter sends an interest requesting C(N). R will then grant access and reply with C(N)

from its cache. This is because the cached version of C(N) is not updated with the correct

authorization information, i.e., verification key(s). This may be partially addressed by setting

C(N)’s expiration time to a value that reflects consumer revocation frequency.

Online revocation protocols, such as OCSP [234], would induce extra communication be-

tween R and P , which nearly defeats the purpose of the cache entirely. In this case, R would

be better suited forwarding the interest upstream to P . Another option for P is to distribute

certificate revocation lists (CRLs) [89] with every fresh content. This, however, introduces

further issues for routers and consumers. First, routers would need to store CRLs and keep

them updated frequently. Second, authorized consumers would need their own public and

private key pair to compute σ. Lastly, routers would need to perform additional verifi-

cations against the CLR. Overall, this approach increases storage, consumer management,

computation, and bandwidth complexity.

12For instance, consumers not renewing their subscription for a certain service.

70

Table 4.3: Overview of per-interest IBAC computational overhead.

IBAC Variation
IBAC Computation Overhead

Routers Producers

Name Obfuscation
Encryption None One decryption

Hash None One hash table lookup

Interest Signatures
Encryption One nonce, timestamp, and

signature verification
One decryption, one signature
verification, Two hash table
lookups (decryption key and
signing key resolution)

Hash One signature verification,
one nonce and timestamp
verification, one hash table
lookup (signing key resolu-
tion)

One signature verification,
three hash table lookups (de-
cryption key, signing key and
name resolution)

4.2.4 Analysis and Evaluation

In this section, we analyze the overhead of each IBAC variation.

Computational Overhead

Computational overhead for routers and producers is expressed in terms of cryptographic

and data structure operations, e.g., signature verification and hash table lookup costs.13

Table 4.3 summarizes these results. To further understand the computational overhead,

we compare two cases: (1) when routers perform authorization checks, and (2) when they

do not. Let τoverhead = τcheck + τverify + τupdate be the authorization check overhead when

routers receive interests, where τcheck is the time required to check for nonce duplication and

timestamp staleness, τverify is the time to verify the payload signature, and Tupdate is the time

to update the nonce collection. Since cache lookup and interest forwarding are performed

regardless of whether or not routers perform authorization checks, we omit them from this

13It is assumed that the cost of any additional checks necessary to determine if an interest requires further
IBAC processing is negligible. For example, this check be done using a simple flag in the interest. Thus, this
overhead is omitted from our estimates.

71

equation. Similarly, τcheck and τupdate are negligible when compared to the cost of signature

verification τverify; thus, they are also excluded.

A router incurs a computational cost of τoverhead for every interest requesting content under

IBAC protection. Therefore, we quantify τoverhead by measuring the time to perform a single

signature verification. We also experiment with batch verification techniques to amortize

the cost of signature verification across multiple interests. While this naturally increases

content retrieval latency since signatures are accumulated for batch verification, it reduces

router computational overhead. Whether or not to use batch verification is up to the router’s

discretion. Furthermore, batch verification requires that IBAC-protected content objects for

which interests are being verified cannot be evicted from the cache while the batch is col-

lected. Table 4.4 shows the improvement using a variety of signature verification algorithms.

Algorithms were implemented and evaluated with Crypto++ [3] and run on a machine with

an Intel(R) Core(TM) i5-3427U CPU operating at 1.80GHz with 8GB of main memory and

using Ubuntu 14.04. Note that, when modeling interest arrival rates using a Poisson dis-

tribution with arrival rate λi for i ∈ {40, 80, 160, 240}, both individual and batch signature

verification incur nearly the same overhead in certain conditions, as we show below.

Table 4.4: Individual and batch ElGamal signature verification times.

Key Batch Sig. Indiv. Batch
Improved

Size Size Size Time Time

1024b 10 512KB 0.599s 0.322s 46%

1024b 10 8MB 0.888s 0.615s 30%

1024b 50 512KB 2.918s 1.579s 46%

1024b 50 8MB 4.315s 2.991s 30%

2048b 10 512KB 4.065s 2.207s 46%

2048b 10 8MB 4.104s 2.269s 45%

2048b 50 512KB 20.081s 11.029s 45%

2048b 50 8MB 21.301s 12.536s 41%

3072b 10 512KB 12.406s 6.789s 45%

3072b 10 8MB 12.804s 7.122s 44%

3072b 50 512KB 60.174s 32.877s 45%

3072b 50 8MB 64.347s 35.601s 45%

72

Denial of service (DoS) is an obvious concern if routers perform authorization checks (the

interest rate decays to 0 in our experiments as the need for verification increases). Let λ

be the rate of arrival interests for IBAC-protected content cached in router R, and let µ be

the service rate for interests, i.e., the rate at which interests are processed (parsed, verified,

etc.). If µ < λ, then R’s throughput will degrade to zero over time [158]. We envision that in

legitimate scenarios without malicious entities generating interests with fake authorization

information, only a small percentage δ of arrival interests will be requesting content under

IBAC protection. To assess DoS attacks in the presence of IBAC authorization checks, we

empirically analyze the effect of δ on the interest service rate of a router. These service

rates, which use different signature verification techniques – individual and batch – denoted

µS and µB, respectively, are shown in Figure 4.5.

0.0 0.2 0.4 0.6 0.8 1.0

Percentage of IBAC-Protected Interests

0

50

100

150

200

250

R
at

e
[in

te
re

st
s/

se
co

nd
]

µS

µB

λ1 = 40

λ2 = 80

λ3 = 160

λ4 = 240

Figure 4.5: Interest service rates IBAC-protected interests

We assume that interests arrive at a base rate of λ1 = 40 [74]; larger values for λ are provided

to see at which point µ < λ due to authorization checks. By the exponential property of the

73

Poisson process, µ is calculated as follows:

µ =
1− δ
τprocess

+
δ

τprocess + τverify
,

where τprocess represents interest processing time not including signature verification14, and

τverify is the time required to perform individual or batch signature verification. In our

experiment, we assume a constant τprocess = 0.005s and only vary τverify. To do so, we

assume a key size of 1024b, batch size of 10, and signature size of 512KB. According to

Table 4.4, this results in τverify = 0.599s and τverify = 0.322s for individual and batch

verification, respectively. Our experiments show that decay of µ as a function of δ is almost

identical for both batch and verification techniques. This is partly because only a small

fraction of interests are verified. Furthermore, our results show that µ > λ is true, i.e., the

router servicing process is stable for reasonable interest arrival rates. Our experiments show

that µ < λ when λ = 160 and δ ≥ 0.2. Moreover, when a Poisson process is assumed, both

individual and batch signature verification perform similarly for small values of δ. However,

batch signature verification is advantageous with larger δ values. For instance, for δ = 0.2,

batch verification provides less than 1% service rate improvement, while it provides 3− 46%

improvement for δ values 0.8− 1.

Storage Overhead

Storage overhead varies from producer to router. If hash-based name obfuscation is used,

producers incur the cost of maintaining a hash table to map obfuscated names to their original

values. However, if content name contains variable name segments, e.g., query string-like

values in URIs, the hash table size can grow significantly since it has to contain all possible

variations. Moreover, producers must bear the storage cost of IBAC access group keys if

encryption-based obfuscation functions are used. Similarly, routers must bear the cost of

14τprocess = 1/mu for interests not requesting IBAC-protected content.

74

storing variable-length tuples of key identities IDGi and the actual verification keys pksGi ,

along with a theoretically unbounded collection of nonces for each IBAC-protected content.

Moreover, these storage costs are proportionate to the number of unique producers that

generates IBAC content.

Bandwidth Overhead

In terms of bandwidth overhead, each interest and content object is expanded to include

additional authorization information, e.g., interest payloads with authorization information

and content objects with authorization keys. Interests without authorization payloads will

only increase (or decrease) by the expansion factor of the obfuscated name. If authorization

payloads are included, then interest messages will grow by |r|+|t|+|σ|+|IDG|, where |r| = κ.

Content object C(N) size increases with length
∑L

i=1 |pksGi |, where L is the number of access

groups allowed to access C(N) and |pksGi | is the public key size associated with group Gi.

Note that increased overhead may cause interests to exceed MTU sizes, which would induce

interest fragmentation. However, given that names may themselves be unbounded, interest

fragmentation seems unavoidable.

4.3 Best Effort Autonomous Deletion in CCN

One notable drawback of the libertarian approach to caching in CCN is that some content

may need to be deleted before its expiration time. Consider content that frequently, yet

sporadically, evolves over time, e.g., news articles. The appearance of breaking-news articles

is unscheduled. As situations develop, updates and corrections to the content occur at

unpredictable times. Such updates supersede previously distributed content by rendering it

stale. In this case, producers need a way to remove old content. Another example is content

75

which contains erroneous information. As errors are detected and corrected, a producer

needs to flush the incorrect older version. Additionally, content may need to be flushed if

access control policies change, e.g., a consumer’s access to cached content is revoked.

Stale content occurs because ExpiryTime is the only way for a producer to communicate

anticipated content lifetime to the network. However, a producer cannot change its mind

after content has been published and distributed. Thus, there is a need for safe and secure in-

network content deletion. To this end, we present BEAD: Best-Effort and Autonomous Dele-

tion. In the process, we encounter and address several challenges for autonomous deletion,

including efficacy, performance, and security. We also experimentally assess the proposed

technique.

4.3.1 BEAD Requirements

One intuitive way of removing stale content from routers’ caches is through the use of

versioning, whereby the content naming format includes a segment that explicitly reflects the

current version. For example, the content of BBC’s World News web-page could be named:

/bbc/news/world/T_VERSION=2.4. Alternatively, timestamps could be used. In that case,

the same BBC page could be named /bbc/news/world/1449187200.15 In either case, it

is unclear how a consumer would determine (in advance) the current timestamp or version

number, without which an interest cannot be formed.16

The main problem with versioning and timestamps is that they can not handle unpredictable

content updates. In CCN, producers are oblivious to where and for how long their content

is cached in the network. Although opportunistic caching is one primary advantage of CCN,

151449187200 is 12/04/2015 at 12:00am UTC.
16There is one trivial way: a consumer contacts the producer directly and asks for the most recent version

number or timestamp. However, this would incur an extra round-trip delay per content retrieval.

76

it greatly complicates deletion of stale content. We believe that, in order to address the

problem, producers need:

1. A way to communicate a single deletion request to all routers that might have cached

offending content.

2. A way to efficiently authenticate deletion requests (allowing routers to quickly authen-

ticate them) while avoiding trivial DoS attacks.

The first requirement is reminiscent of IP traceback – a class of techniques for identifying

the original source of a (usually malicious) packets with traces. In the context of IP, this is

often framed as a mechanism to mitigate DoS attacks. In this section, one goal is to learn

where content was previously forwarded so that deletion requests can be routed along these

same paths, which terminate at interest origins. Thus, ideas from IP traceback based on

packet logging (e.g., [288]) and (deterministic or probabilistic) packet marking (e.g., [154, 50])

influence the design and forwarding strategies of BEAD messages.

We now show how to address these requirements with BEAD.

4.3.2 Authenticating Deletion Requests

Producers must prove content ownership to routers that receive deletion requests. Otherwise,

an adversary can impersonate a producer and invoke content deletion, resulting in another

form of DoS. One way to authenticate deletion requests is by a producer-generated digital

signature on each request. However, besides being inefficient, forcing routers to verify sig-

natures on deletion requests can be itself parlayed into DoS attacks [136, 150]. Moreover, it

may necessitate public key retrieval, certificate handling, and other non-trivial (for routers)

issues.

77

Our approach uses a lightweight token that proves content ownership. It works as follows.

When a producer P creates a content object C, it generates a random λ-bit string xC , called

the deletion token. P then computes the digest of this token using a suitable cryptographic

hash function17, yC = H(xC), and includes yC in C. Later, if and when P wishes to delete

C from the network, P includes xC in the deletion request. (For now, we assume that P can

route these requests to any router caching C.) Upon receipt, each R verifies that yC (cached

alongside the content) matches H(xC). If so, R knows that P must have issued the request

and deletes C from the cache.18

4.3.3 Routing Deletion Requests

The remaining (though major) issue is how to route deletion requests from P to each router

which could have cached offending content. Let d be the λ-bit hash of C(N), i.e., d =

H(C(N)). Let E(N, d) be a deletion request, or erase message, for content named N and

hash digest d. Let RN be the set of routers that cached C(N). Finally, let FIBR be R’s FIB.

From here on, we use the term erase message to refer to a deletion request. Also, we assume

that erase messages are authenticated using the method described in Section 4.3.2.

Flooding

We begin by considering the simplest approach: reverse-path controlled flooding [47] of

deletion requests. When R ∈ RN receives E(N, d), it forwards it on all interfaces except

those which have a matching FIB entry, i.e., to all interfaces through which the producer is

not reachable.

17Suitable hash functions include those with pre-image resistance, which means that, given y, it is difficult
to find an x such that y = H(x).

18This is due to the randomness of xC and the collision-resistance of H(·).

78

Flooding offers some advantages, the most important of which is the ability to reach network

edges even if routers in RN no longer cache offending content. This is important since routers

do not cache content uniformly, and some may not even have caches. However, with flooding

traffic volumes generated from a single erase message would be very high as most would be

forwarded to routers that never even cached the target content.

Forwarder Histories for Content Traceback

Ideally, routers would only forward erase messages on interfaces to which the referenced

content had been previously forwarded. In other words, erase messages should only be

forwarded along the content distribution spanning tree where the producer is the root and

leaves are interest origins. One way to forward erase messages along the edges of this tree is

for each router R ∈ RN to maintain a forwarding history of C(N). There are several places

where this history can be kept, including: (1) in the cache where C(N) is stored, (2) in a

separate forwarding log (similar to [288], as a form of IP traceback) at each router, and (3)

in packets themselves. In each case, historical information constitutes a form of traceback

that allows routers to identify where content was previously forwarded. We now describe

each approach in more detail.

In-Cache Forwarding Histories : When a router caches C(N) it can also remember the

downstream interfaces where C(N) was forwarded. We denote this set of interfaces as FN .

When a router receives an interest I(N) on interface Fi, it responds with C(N) and adds Fi

to FN . For a router with K interfaces, this additional state costs O(K) bits per cache entry.

When a router caching C(N) receives E(N, d), it forwards it on all interfaces in FN .

In-cache forwarding histories are only effective for routers with large caches, since forwarding

information lifetime is bound to cache entry lifetime, which can be small or even zero (if a

79

router has no cache at all). Since FN is deleted whenever C(N) is flushed from the cache,

this can cause future E(N, d) messages to not be forwarded to downstream routers which

might still cache C(N).

Local Forwarding Logs : Long-term packet logs (histories) have their roots in IP trace-

back techniques from the early 2000s, e.g., [297, 288]. The problem here is similar: routers

need long-term histories of packets (content) that were previously processed and forwarded.19

In this context, a history is a set-like data structure that allows content objects to be inserted

and then later queried for membership. There are two types of histories: lossless and lossy.

The former only return “yes” for content objects that have previously been inserted. In con-

trast, a lossy history might return false positives or negatives. Routers use these structures

by associating one history to each interface. When a router receives E(N, d) and C(N) is

not cached, it forwards E(N, d) on each interface for which the corresponding forwarding

interface history has a record of C(N), i.e., all histories for which membership query returns

“yes”. This procedure is outlined in Figure 4.6.20

F0
F1
F2

CS

F3
F4
F5
F6
F7

C[/a/b], {F0, F2}

E[/a/b, d]E[/a/b, d]

E[/a/b,d]

H0
H1
H2

(1) check
cache

(2) check
forwarding
histories

(3) forward
erase message

for matches

Figure 4.6: erase message forwarding strategy

19As indicated in [288], historical information for Internet-scale traffic (IP packets) can not last beyond a
few minutes, which might still be less than what we needed for BEAD.

20Similar to the flooding algorithm, this check is not performed for interfaces via which the content
producer can be reached.

80

We now describe some ways of implementing lossless and lossy histories that vary in their

computation and memory requirements.

Lossless Forwarder Histories require a unique identifier to be kept after a content object

has been forwarded. We assume that content hash d serves as such an identifier (with

collision probability negligible in λ). Implementing this type of forwarder history can be

done trivially with a hash set HSR as follows. To insert a content object into the history,

compute and store d in HSR. To query the history, return “yes” if d ∈ HSR and “no”

otherwise. Insertion and lookup each require constant time.

Lossy Forwarder Histories store historical information in memory-constrained systems

at the cost of false positives and false negatives. Similar to SPIE traceback [288], we use

BFs [63] to implement lossy forwarder histories. BFs enable probabilistic set membership

queries.

The choices of BF properties, e.g., size and hash functions, impact efficacy of this tech-

nique. Filters that saturate too quickly result in high false positive rates. If all interface

filters become saturated then erase messages are effectively broadcast. Therefore, it is im-

portant to eventually remove stale elements from filters. Unfortunately, normal BFs do not

provide element removal. However, so-called Counting Bloom Filters (CBFs) [111] support

set membership queries with removal. Instead of using bits to indicate set membership,

CBFs use counters. When loading an element into CBF, the counters corresponding to the

output of the hash functions are increased by one. Consequently, removing an element is

done by decrementing the same counters. The problem with CBFs is that one must know

the element to delete. Since routers would discard content after inserting them into these

filters21, they have no way of knowing what content is in the filter, and thus what elements

to eventually delete. Their only recourse is to remove elements by decrementing counters at

random. Intuitively, a router should delete random elements from the filter (the history) at

21 This is because content is only added to histories upon its removal from the cache.

81

a frequency which reflects the average ExpiryTime of received content. This can increase

the false negative probability and reduce the possibility of delivering erase messages to their

corresponding destination.

Variants of CBFs, such as Time-Decaying (TDBFs) [343, 190] and Stable (SBFs) [102] BFs

can also be used. TDBFs have the property that elements are slowly removed from the

filter over time, thereby keeping the rate of false positives minimized. However, the natural

decay property may lead to false negatives. SBFs are dynamically resized to keep the false

probabilities minimized. Similar to CBFs and TDBFs, SBFs also suffer from false negatives.

Interest Marking for Content Traceback Packet marking is a standard technique for

IP traceback [154]. In the context of this work, marking is performed on interests to capture

interest origins. This information can be later used to learn the interface to which an erase

needs to be sent. Specifically, erase messages can carry marking information so routers can

identify destination forwarding interfaces without storing any local state.

One trivial marking method is to append the arrival interface to each interest. Specifically,

when R receives I(N) on face Fi, R prepends (R,Fi) to a list contained in the header of

the interest. Producers record these traces (hop sequences) upon receipt and include them

in future erase messages. When R receives an erase message with a trace it pops the last

element (R,Fi) off the trace list and forwards it on Fi.

This technique distributes the forwarding history among messages in the network. Therefore,

this information must be secure. To illustrate this requirement, assume router Ri receives

E(N, d) with the sequence of hops

[(Ri, Fi), (Ri−1, Fi−1), . . . , (R2, F2), (R1, F1)]

82

from interface Fi+1. Ri needs a way to securely guarantee that (Ri, Fi) was previously

prepended, by itself, to the subsequence:

[(Ri−1, Fi−1), . . . , (R2, F2), (R1, F1)].

Otherwise, an adversary can forge unsolicited erase messages with apparently correct trace

sequences. Alternatively, one can modify existing sequences in erase messages to prevent

them from being routed towards their destination.

One way of authenticating hop-sequence traces is for Ri to compute and include a Message

Authentication Code (MAC) [181, 193] tag ti over (relevant) interest details, e.g., the name

and hop sequence. Specifically, Ri computes ti and adds (Ri, Fi, ti) to each interest hop

sequence before forwarding them. Since erase messages carry a name of content to be deleted,

each router can verify its precomputed tag before forwarding erase messages downstream.

Since routers compute and verify tags locally, a key management and distribution protocol

is not required. We do, however, assume that routers are able to generate and maintain

cryptographic keys of sufficient length necessary for MAC computation. As an added feature,

hop-sequence information can also be used for detecting both interest and erase loops [134].

Although trace-based forwarding can deliver erase messages to all routers on between interest

origins (consumers) and producers, the latter must store each unique trace from each interest.

This is because (1) each trace corresponds to only one path in the network, and (2) interests

issued by multiple consumers are most likely to traverse different paths to the producer.

Producers can attempt to compile all collected traces in a data structure forming a spanning

tree. This structure would be included in erase message headers, allowing routers to forwarder

erase messages correctly. The main disadvantage of this approach is that the size of the data

structure grows linearly with the number of consumers and is most likely to be greater

than average link MTU. This means that erase messages would likely be fragmented (and

83

possibly re-fragmented), and hop-by-hop reassembly is unavoidable. Another alternative

is for producers to send multiple erase messages one for each set of traces correlated to

a hop-sequence. In Section 4.3.4, we compare and evaluate the performance and resource

consumption of these two techniques.

4.3.4 BEAD Analysis

We now assess some routing strategies for erase messages. Let nRt be the total number of

content objects forwarded by R at time t and let µRF be R’s content forwarding rate. Clearly,

nRt grows monotonically as a function of µRF .

Flooding Analysis

Recall that the reverse path flooding algorithm works by only sending broadcast messages to

interfaces through which the producer is not reachable. Though effective, this is not scalable.

If each router flooded erase messages then they would reach a set of routers R∗ ⊇ RN , where

it is likely that |R ∗ | � |RN |. Therefore, flooding should always be a last resort for erase

messages. We assess the actual overhead of this technique in Section 4.3.5.

Lossless History Analysis

The memory (and possibly computational) cost of a lossless forwarder history grows as a

function of t. Thus, history collection will inevitably saturate memory at some point. Let

nRmax be the total size (in entries) of the history memory for R. Saturation is reached at

time t such that nRt ≥ nRmax. We compute the time required to saturate a lossless forwarder

history in two scenarios. Assuming each content object is 4, 096B and hash digests are 32B.

84

• Consumer-facing router: We assume a caching consumer-facing router (e.g., an

access point) with 4GB of history storage and data rate of 100 Mbps. This data rate

is equivalent to a content forwarding rate of µRF = 3, 200 Cps (content packets per

second). If R operates at full capacity with a full cache, i.e., storing every forwarded

content requires eviction of an already cached one, saturation will take 41, 943 seconds

(approximately 12 hours). This window of time might be longer than the ExpiryTime

of content objects that are subject to erasure. For instance, news feed pages are likely

to be updated with a frequency faster than 1/12 hours.

• Core router: We assume a non-caching CCN core router with 1TB of flash history

storage and data rate of 10 Tbps equivalent to µRF = 335 MCps. If R always operates

at full capacity, i.e., forwards at 10 Tbps, saturation occurs in 102 seconds. In this

case producers have a time window of less than 2 minutes to issue an erase message

for content C after it was last served.

R’s saturation time can be lengthened by increasing the size of the forwarder history. How-

ever, at this rate, the cost of adding more memory to make saturation time useful is far too

expensive: 1TB for 2 minutes of history in a core router.

A very natural question arises: what happens when R’s history storage is saturated? R can

evict old history entries randomly, or according to some policy, e.g., LRU. However, keeping

track of history entries’ ages might lead to reduced performance. Another alternative is

to divide history storage into smaller chunks, each corresponding to a set time window of

history entries. Once history storage is saturated, the oldest chunk is erased to provide space

for new entries. Using the consuming-facing router example above, 4GB of history storage

can be divided into 12 chunks, each corresponding to one hour. The router could then erase

the history recorded 12 hours ago in order to store history entries for the coming hour.

85

Lossy History Analysis

Lossy histories are useful when lossless ones are too expensive, e.g., in core network routers.

Our lossy forwarder history construction uses BFs. Given anm-bit BF that stores n elements,

the number of input hash functions k can be optimized and false positive probability can be

estimated using Equation 4.1 [70]. The optimal value of k is also given as a function of m

and n.

f(m, ·, n) ≈ (0.6185)
m
n , k = ln(2) · m

n
(4.1)

In practice, a router can optimize the number of hash functions to lower the false positive

probability. An upper bound of k can be set to limit hashing overhead.

We now analyze lossy forwarder histories in the context of the two scenarios mentioned above

with the same history storage and data rates. We also assume that each content object added

to a BF changes the value of new distinct k bits from 0 to 1. Clearly, this is unrealistic,

since we do not consider the possibility of overlapping of hash function outputs for different

input elements. However, this assumption captures the worst-case scenario.

• Consumer-facing router: To maintain a maximum false positive probability of

10−32, a BF of size 4GB can fit n ≤ 2 × 108 elements. Based on Equation 4.1, this

requires k = 120 hash functions. Thus, saturation takes 89, 478 seconds (a little over

one day).

• Core router: To maintain the same false positive probability, a BF of size 1TB can

accommodate n ≤ 5.7 × 108 elements, which corresponds to k = 107 hashes. Here,

saturation occurs in 245 seconds.

One major drawback of using BFs for lossy forwarder histories is that saturation is more

difficult to resolve. Recall that, with lossless histories, a router can remove old entries in

86

order to add new ones. A router could also delete the oldest chunk of the history once it is

saturated. However, with lossy histories, a router can either: (1) flush the entire lossy history

and start over, or (2) use CBFs which support element deletion with the use of counters.

Unfortunately, both approaches introduce false negatives.

Packet Marking Analysis

Packet marking is computationally inexpensive since it requires a single MAC computation

per interest and erase. Its main drawback is an increased memory footprint in interests along

each hop. Recall that traces in the hop-sequence consist of: (1) router identifier, (2) interface

identifier, and (3) MAC tag. Assuming a 2-byte interface identifier and a SHA-256-based

HMAC [193], the total size of each hop sequence element is 38 bytes. Assuming a 16-hop

router-level path,22 this corresponds to an extra 608 bytes for each interest.

We now compare two hop-sequence techniques described in Section 4.3.3. Assume a tree

topology with producer P at the root with height h, 2h consumers at the leaves with height

0, and 2h − 2 routers. Assume all consumers request content C and all routers append

hop-sequence traces to the corresponding interests. In this case, P receives 2h interests,

each with h − 1 traces. If P includes all these traces in a single erase message, its size

would grow by
(
2h · (h− 1)

)
× 38 bytes. This grows to 35 MB for h = 16, which is clearly

impractical.23 On the other hand, if P decides to send a separate erase to each consumer

it would generate 2h erase messages. The same overall volume of traces (35 MB) will be

sent from P to consumers. However, it would be split into numerous erase messages. One

advantage here is that each erase messages size will likely not exceed the path MTU and

therefore not require fragmentation.

22The average Internet hop-count is currently 16 [49].
23We defer designing a more efficient scheme for combining hop-sequence traces to future work.

87

Summary of BEAD

As follows from the above, BEAD is not a single, concrete protocol. It is a set of techniques

for generating and distributing erase messages to routers which may have cached offending

content. We presented several alternatives, each of which are practical in different networks

and network locations. For instance, consumer-facing (caching) routers can keep lossless

or lossy histories for at least a day. Meanwhile, interest marking is better suited for core

network routers. Therefore, we believe that all aforementioned techniques can be used, in

combination, for routing erase messages. Our specific recommendations for forwarding erase

messages are as follows:

1. If R supports interest marking, the first tuple in the hop-sequence traces is valid and

appended by the router itself, then information in the tuple is used to route the erase

message downstream.

2. If the content is in R’s cache, then in-cache history is used to route the erase message.

3. If the content is not in R’s cache, but R keeps lossless or lossy histories, they are used

for erase message routing.

4. Otherwise, R floods received erase messages.

Recommendation 1 is most appropriate for core network routers, 2 and 3 for less busy edge

network routers, and 4 as a failover mechanism. Most routers would likely prefer to drop erase

messages instead of flooding them. This is why BEAD is best-effort : it does not guarantee

that each erase message will be delivered to all entities caching the offending content.

As mentioned before, not all published content is subject to future deletion. If routers can

make this distinction, there is no need to record history entries about content that will not

be deleted. Such distinction can be achieved by adding an optional CanERASE flag to content

object headers. If this flag is not present, the default behavior is to assume that no erase

messages will ever be sent for the corresponding content. Moreover, interests requesting

88

content that will not be deleted are not required to be marked by routers. Producers could

tell consumers what content is subject to deletion by overloading manifests. Specifically,

each pointer in a manifest can contain the CanERASE flag. In this case, the interest header

format should be modified to include this optional flag. Moreover, since it is not guaranteed

that all content objects will be fetched from a manifest, the default behavior of (core) routers

should be to append hop-sequence traces to interests if the CanERASE flag is missing.

4.3.5 Performance Assessment

Our simulations focused on two properties of BEAD: network overhead, i.e., additional bytes

added for erase messages, and forwarder overhead for processing erase messages, i.e., amount

of time it takes to process each erase message.

Consumer
Edge Router
Core Router

Figure 4.7: DFN topology

89

C0

C1

C2

C3

C4

C5

C6

C7

C8
C9

C10

C11

C12
C13

C14

C15

R0 R1

R2

R3
R4

R5

R6

R7

R8

R9

R10
R11

R12

R13

R14
R15

R16

R17

R18

R19
R20

R21

R22

R23

R24

R25

R26

R27

R28

R29
R30

R31

R32

R33

R34

R35

R36

R37

R38
R39

R40

R41

R42

R43
R44 R45

R46

R47

R48

R49

R50
R51

R52

R53

R54

R55

R56R57
R58

R59

R60
R61
R62

R63R64

R65

R66

R67
R68

R69

R70 R71

R72

R73 R74

R75

R76
R77

R78

R79

R80

R81
R82

R83

R84

R85
R86

R87
R88

R89

R90

R91

R92

R93
R94

R95

R96
R97

R98
R99

R100

R101

R102

R103

R104 R105

R106

R107
R108

R109
R110R111

R112R113
R114
R115

R116

R117

R118

R119
R120

R121 R122

R123
R124

R125
R126

R127
R128
R129
R130
R131

Figure 4.8: AT&T topology

Network Overhead

To assess network overhead due to generating and forwarding erase messages we study the

most costly scenario next to broadcasting: BEAD with lossless histories and routers with

lossless links. To do so, we extended ndnSIM 2.0 [215], an implementation of NDN archi-

tecture as a NS-3 [9] module for simulation purposes, to support erase messages. With this

modification, we ran two sets of experiments using the following topologies (shown in Figures

4.7 and 4.8, respectively):

• The DFN network, Deutsches ForschungsNetz (German Research Network) [5, 6]: a

German network developed for research and education purposes which consists of 30

connected routers positioned in different areas of Germany. The blue dots in the figure

represent group of consumers (10 consumers per blue dot) connected to edge routers

(red dots), while the green dots represent core network routers.

• The AT&T backbone network [85]. This consists of over 130 routers. Each logical

consumer in the figure represents multiple (5) physical consumers connected to an

edge router.

90

(a) Data processing overhead in the DFN topology
with 160 consumers.

(b) erase message processing overhead in the DFN
topology with 160 consumers.

(c) Data processing overhead in the AT&T topology
with 160 consumers. Not all routers are present in
the image.

(d) erase message processing overhead in the AT&T
topology with 160 consumers. Not all routers are
present in the image.

Figure 4.9: erase message network overhead

In all experiments, consumers issue requests at a rate of 10 interests per second for content

with the name prefix /prefix and monotonically increasing sequence number suffix. Every

router uses a lossless history to record previously forwarded content objects for erase for-

warding. Routers communicate over lossless links. Lastly, producers issue erase messages

for 50% of their content every 1 second. (This may cause a producer to send a BEAD more

than once.) Under these conditions, we measure router packet processing overhead with

respect to content objects and erase messages. Figures 4.9a and 4.9b compare the overhead

91

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
Node Index

0.0

0.2

0.4

0.6

0.8

1.0

De
la

y
[m

s]

(a) DFN topology with 160 consumers.

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
Node Index

0.00

0.02

0.04

0.06

0.08

0.10

De
la

y
[m

s]

(b) AT&T topology with 160 consumers.

Figure 4.10: erase message forwarding overhead

of processing content objects and erase messages in the DFN topology with 160 consumers.

Similarly, Figures 4.9c and 4.9d show the same type of overhead in the AT&T topology with

the same number of consumers. Routers are identified by integers in the range [160..189].

InData (OutData) and InErase (OutErase) correspond to the amount of content object and

erase traffic received from (sent to) an upstream (downstream) node, respectively. Ingress

data is shown in red and egress data is shown in blue. Comparatively, we find that erase

messages contribute very little overhead to the network with respect to the bandwidth con-

sumed by content objects. Specifically, the total amount of erase message traffic in the DFN

topology is 1.8% of the total content objects traffic, whereas it is only 0.09% in the AT&T

topology. To understand these differences, consider Figures 4.9c and 4.9d. In Figure 4.9c,

core routers receive and forward more content packets than those not in the core. In Figure

4.9d, those same core routers receive erase messages but do not forward all of them since

they have were not in the history. This means that the content had previously been deleted.

This is why the amount of egress traffic is less than the amount of ingress traffic.

92

We also assessed the computational overhead incurred by each router in these scenarios. The

average time to process a single erase message for the DFN and AT&T scenarios is shown

in Figures 4.10a and 4.10b. We see that only routers closest to the producer incur greater

than 1.0ms to process an erase message since they almost always receive, store, and forward

them.

4.3.6 Enabling Content Deletion

We now discuss potential economic incentives for routers and ISPs to support content deletion

and implement BEAD.

BEAD and Accounting

Recall that BEAD is best-effort, unless flooding is used, which is undesirable. Barring major

architectural changes, this seems to be optimal. However, if producers knew exactly where

content was cached, then erase messages could be more accurately routed. For example, if

a producer knew that a particular AS had a copy of the content cached by some node in

the system, then the producer could specifically ask the AS to distribute an erase internally.

This is far superior to routing erase messages across the core of the network in hopes that

they might reach this AS (and any others with a cached copy).

We believe that it is possible to distribute content caching location information along with

accounting information. A scheme for secure accounting in CCN [149] suggests that routers

should notify producers of content they serve from caches by sending a so-called “push

interest” or pInt. This approach can be modified such that: (1) AS gateways send pInt

messages when content is cached in their domain and (2) pInt messages carry the prefix of

an AS accounting management server within the AS.24 Whenever a producer wants to delete

24Accounting management servers are centralized entities that manage accounting activities inside the AS.

93

certain content, it sends an erase message to each accounting management server – one per

AS – that previously reported caching corresponding content. Then, the latter distribute

the erase message within their ASes. Intra-AS distribution can be achieved via techniques

described in Section 4.3.3. In fact, flooding might well be appropriate for that purpose since

erase messages would not traverse AS boundaries.

The relationship between accounting and BEAD is natural. This is because one of the

important applications of accounting is to bill for cache space. From an economic perspective,

it would not be surprising for in-network caching to become a paid service. Routers and ASes

could offer caching services for producers. A reasonable extension to this service would be

to also offer a deletion service via BEAD.

BEAD in the Core

Flooding in the network core is not viable as a means of distributing erase messages. More-

over, forwarder histories and packet marking are (relatively) expensive operations and too

costly for the fast path in the core. ISPs will likely just drop these messages due to a lack of

economic incentive to forward them. Thus, in any plausible CCN network – where producers

and consumers are at the edges of a network, while most traffic is routed through the core

– erase messages are most likely to be propagated along only half of producer-to-consumer

path(s). This is troublesome since content is most likely to be cached near consumers in

edge (or near-edge) routers, and erase messages might never reach these routers.

To address this issue, core routers must be encouraged (with incentives) to carry and forward

erase messages from producers to consumers. Since erase messages will typically amplify

traffic, producers should be expected to pay for this increase. As before, this effectively turns

BEAD into a service provided by ISPs that complements monetized caching; producers who

pay for cache space may also have the choice to pay for on-demand deletion via BEAD.

94

Chapter 5

Privacy

Privacy is a primary goal of FIAs and similar next-generation network architectures. CCN

partly achieves this goal. Consumers can retrieve named content without ever exposing their

location via a source address. Interests only reveal immediate downstream hops from which

they emanate. In contrast to IP, which mandates host-to-host source and destination packet

addresses, this can obviate the need for anonymizing services such as Tor [13].

Despite this improvement, privacy in CCN is far from ideal. As discussed by Chaabane

et al. [76] and Fotiou et al. [120], many privacy threats exist in CCN and related ICN

architectures, including: traffic monitoring, inference, and invasion. Many core features of

the architecture, sold as a manner of operational simplicity, usability, and efficiency, harm

user privacy. For example, opportunistic and transparent caching is a core architectural

feature. A cache hit only occurs if two consumers request identical content stored in a router.

Thus, if an adversary wants to know if a nearby consumer requested a specific content, it

can issue an interest for said content and check to see if it has been satisfied by a cache

(by measuring retrieval latency).1 This type of cache probing attack was first presented by

1This attack is significantly worse in NDN due to interest exclusion filters. Using these filters, an adversary
can effectively probe, or harvest, a cache for all local content by requesting content with the default name
’/’ and a hop limit of 0.

95

Lauinger et al. [197, 196] and extensively studied independently by Mohaisen et al. [222, 221]

and Acs et al. [22, 23]. Proposed countermeasures include randomly delaying requests to

mask cache presence. However, this technique negates an important cache benefit: reduced

observable latency. As such, Lauinger et al. [197] proposed more specialized countermeasures

to cache probing attacks, including selective caching and traffic tunneling. The former can

be implemented locally at each router, whereas the latter requires modifications to the CCN

architecture. Chaabane et al. [76] proposed similar tunneling ideas. Compagno et al. [84]

extended these probing attacks to a distributed adversary. They showed it is possible to use

probing to geolocate specific consumers in the network.

Another privacy problem relates to names themselves. By default, names are not encrypted

between consumers and producers. This means that interests and content objects carry

application names, e.g., /edu/uci/ics/sprout/caw/fileX, in cleartext. Routers and other

network nodes may learn information about content using these names, even if payloads are

encrypted. Eavesdropping adversaries can observe which content is sought after by some

downstream consumer. Georgen et al. [153] built name-based firewalls for CCN exploiting

this visibility. In Section 5.1, we elaborate on privacy issues that stem from cleartext names.

Section 5.2 further explores these issues and shows how statically encrypted interest and

content packets are subject to classical frequency analysis attacks. Interestingly, caching

helps mitigate this type of attack while simultaneously exacerbating cache probing attacks.

The literature abounds with approaches to address privacy problems, ranging from end-to-

end encryption protocols, similar to TLS, to fundamental architectural changes. Techniques

and countermeasures vary based on adversarial models and desired privacy goals. For exam-

ple, Tor-like systems help when consumer and producer anonymity are desired. Anonymous

communication over TCP/IP has a long and extensive history, mostly centered around two

fundamental techniques: centralized anonymity proxies and distributed anonymity layering

services. The Lucent Personalized Web Assistant [130] is one example of a centralized proxy

96

/edu/uci/ics/sprout/caw/fileX

interposed between communicating end-points. Unfortunately, such techniques are suscep-

tible to passive eavesdropping attacks that monitor proxy activity. Their centralized nature

also leads to a single point of trust and failure.

Most distributed approaches are based on Chaum’s mix network approach to secure (anony-

mous) email [78]. The main idea is that several layers of concentric public-key encryption are

applied to outgoing messages to traverse a specified set of mixes, each of which iteratively

unwraps one layer of encryption and forwards the resulting payload to the next mix hop.

By design, each mix buffers incoming messages that are decrypted, shuffles the buffer when

a certain threshold is reached, and sequentially forwards each message after a random delay.

This “mixing” strategy serves to thwart passive eavesdropping attacks since (given suffi-

cient volumes of incoming messages) an adversary cannot correlate outgoing and incoming

messages.

Other low-latency solutions based on mix networks are Babel [160] and Mixminion [94]. The

main difference is that their goal is to provide anonymity with respect to a global eavesdropper

adversary. To do so, each mix generates cover (chaff) traffic in addition to randomized delays.

However, such unpredictable traffic delivery patterns make these solutions unsuitable for

applications with low-latency requirements.

Low-latency anonymous communication techniques aim to minimize latency by avoiding

batching (delaying) and re-ordering of messages as well as chaffing. As shown by Serjantov

[279], traffic patterns in low-latency anonymity systems can be used to deanonymize clients.

Notable examples include: Crowds [262] (vulnerable to local eavesdroppers and predecessor

attacks [333]), Morphmix [267], Tarzan [128], and Tor [300] as well as its variant I2P [341].

Crowds is unique in that each mix probabilistically chooses whether to forward a decrypted

message or send it to its final destination. Morphmix is distinct from Crowds in that it does

not use a lookup service to track all participating nodes. It is also unique in that circuits

are dynamically created by each mix. In particular, clients first pick a mix (entry point) for

97

a circuit, which then randomly selects the next hop in the circuit along which messages are

forwarded. Tarzan’s unique property is that it uses globally verifiable mimics for each node

to imitate bidirectional cover traffic, thus further obfuscating message flow between senders

and receiver. Tor uses a centralized directory to locate and establish circuits through nodes

(circuits of length three are sufficient for the required anonymity claims). Furthermore,

these circuits are short-lived. The amount of available bandwidth at each node is taken into

account during circuit establishment and multiple TCP connections are multiplexed over

one circuit so as to achieve better performance. To improve throughput and mask traffic,

communication between adjacent Tor nodes (in a given circuit) is secured via TLS. Finally,

Tor does not introduce any decoy traffic or randomization to hide traffic patterns.

ANDāNA was the first mixnet-like anonymizing application for CCN [105]. Inspired by Tor,

ANDāNA onion encrypts interest and content packets using anonymizing circuits. By default,

onion encryption is done with public keys. Chung et al. [278] presented an alternative to

ANDāNA wherein the hash of each interest is included in the public-key interest onion. This

permits each hop of the circuit to inspect their PIT and cache as normal. Content objects

are not onion-encrypted along the reverse path; pairs of anonymizing routers in a circuit

share keys used to encrypt content in transit. Receiving routers decrypt content and store

plaintext variants, indexed by corresponding name hashes. Section 5.3 describes AC3N[309],

a further enhancement to ANDāNA that replaces stateless public-key cryptography with

stateful symmetric-key cryptography. Unlike Seo et al. [278], interest identifiers are not

exposed to any hop in the circuit except the terminal node.

Arianfar et al. [42] presented another strategy for preserving consumer anonymity. In their

system, producers mix sensitive content with so-called “cover content.” Consumers then

obtain content by requesting this mixture, hiding (to some extent) their real request. Aside

from storage and bandwidth increases, this technique neither provides protection against

malicious producers nor offers unlinkability between consumers and producers. Tao et al.

98

[303] described a similar approach wherein content is mixed together via randomized lin-

ear network coding. Both interest and content packets are chunked and encrypted for a

reconstructing proxy that handles packet forwarding. Misra et al. [306] proposed a similar

mechanism wherein interests are encoded with a huffman code. A trusted proxy decodes the

interests and fetches content on behalf of the consumers. Another proxy-based design was

described by Fotiou et al. [125]. Their approach involves a hierarchy of encrypted content

brokers. Producers submit encrypted content to a broker hierarchy. Consumers query bro-

kers for content and retrieve either a pointer to a child broker or original content producer(s).

Each query is encrypted via additively homomorphic encryption, which permits brokers to

operate on it without decryption.

Martinez-Julia et al. [214, 213] proposed a similar scheme that uses an overlay network and

infrastructure for privacy and untraceability in CCN. Each network entity, e.g., router, has

a digital identity and is part of a domain. A special component called the Domain Trusted

Entity (DTE) manages entity-to-identifier associations and authentication. DTEs form an

overlay network that enable so-called “identity-based” communication. Entities who wish to

communicate with another tunnel communication through DTE overlays using identities to

specify recipients. Elabidi et al. [110] proposed a privacy-preserving extension to CCN based

on expiring identities. Their system involves identity providers, trust verification providers,

and digital identity protection authorities. Identity providers assign and rotate identities for

entities. Users query trust verification providers to check identifier validity. Publishers give

users access to content through trust verification providers.2

Rembarz et al. [263] proposed a tunnel-based approach for private publishing in NetInf.

Publishers and subscribers communicate through intermediary gateways. Publishers upload

data to a private name resolver (PNR). Subscribers resolve names to gateways with whom

they authenticate themselves. In turn, gateways resolve names to content for subscribers

2This is also a system for access control.

99

using the PNR. A different variant removes gateways and has the PNR create a private bind-

ing between content IDs and unlinkable IDs sent to the global NR. The PNR authenticates

content requests and grants Kerberos-style tokens to subscribers to fetch from publishers.

Katsaros et al. [179] enumerated a subset of information leaked through CCN names, includ-

ing: service type, ownership, caching properties, service class, scope, and content format.

Certain pieces of information must be exposed for QoS purposes, e.g., service class and con-

tent format. The rest should be hidden. Chaabane et al. [76] suggested using BFs to mask

real application names. They propose using a single BF for each segment in a hierarchy.

BF parameter selection is ignored. Kazmi et al. [183] studied, in part, tradeoffs of privacy

and network robustness in ICEMAN. Since ICEMAN publishers can control which nodes

(brokers) have access to certain metadata tags (by encrypting these tags), access restrictions

for improved privacy come at a cost of limited routing options. The authors experimentally

evaluate this impact on routing in a simple grid topology using a variety of routing strategies,

including promiscuous routing, i.e., with no privacy, universal routing, i.e., where all nodes

shared access rights to decrypt metadata tags, and circumference routing, i.e., where only

edge nodes can decrypt metadata. Time to fetch data increased as metadata access scope

decreased, with a more significant increase for circumference routing.

In many cases, tunneling may be a simpler alternative when some measurable privacy is

desired.3 Tunneling can be done in the network or end-to-end between applications. (For

comparison, these variants are analogous to IPsec and TLS in IP-based networks.) Each

presents their own set of challenges. Section 5.4 describes our approach for (network-layer)

namespace tunneling in CCN. Tunneling may also occur at the application layer, e.g., via

secure sessions bootstrapped by CCNxKE [227, 228]. A different session-based scheme was

designed by Wang et al. [327]. In contrast to CCNxKE, these session secrets are not

forward secure. Moreover, their system requires a hosting service to function. CCNxKE is

3ANDāNA and similar schemes may be viewed as nested tunnels, and thereby provide greater privacy and
anonymity benefits.

100

also application-agnostic, similar to TLS. The secure transport protocol of Renault et al.

[265, 266] is also similar to CCNxKE. However, their scheme requires routers to participate

with a trusted security controller to authenticate and authorize users and establish a shared

secret. CCNxKE requires no router involvement.

Asghar et al. [44] designed a system called PROTECTOR that decouples application names

from those used to route packets in the network. Specifically, edge routers and access points

are given proxy re-encryption keys for every possible producer and user. Consumers encrypt

interest names before sending them to the network. When an encrypted interest arrives at an

edge router, the latter re-encrypts it to a “network ciphertext space,” via proxy re-encryption

[62]. Routers forward interests based on (now encrypted) names as per usual. Aside from

key management and scalability problems, edge routers can only process 34 interests/second,

which is inadequate for real-world applications. Moreover, consumers are required to obtain

unique proxy re-encryption keys from some key manager at startup.

One downside to tunneling and related techniques is that it requires endpoint applications

or network operators to opt-in. Section 5.5 describes a mechanism called TRAPS for obfus-

cating interests and encrypting content similar to PROTECTOR that does not have such

requirements. Such transparent encryption is prevalent in IP-based networks. Protocols

such as IPsec [186] and tcpcrypt [60] protect individual packets from eavesdroppers by en-

cryption performed deep in the network stack. They both involve some handshake protocol,

e.g., tcpcrypt key establishment or IPsec IKE, to establish a secure channel with a shared

cryptographic key. In effect, IPsec and tcpcrypt encrypt all data above the network and

transport layer of the TCP/IP stack, respectively, which protects packets sent between tun-

nel endpoints.

Per-packet encryption via tcpcrypt and IPsec provides confidentiality and privacy for commu-

nication with well-known hosts; only source and destination addresses are visible in cleartext

to eavesdroppers. However, discovering host addresses via DNS often reveals information

101

that breaks these privacy assurances. DNSCurve [56] and DNS-over-TLS [347] are two ap-

proaches to this leakage problem which seek to provide DNS query privacy by encrypting

the contents of each request. These approaches are different from those that use Tor [300]

to hide the location or origin of DNS queries since they only hide the query contents.

5.1 Data Privacy Challenges

At present, the baseline for privacy in the Internet is end-to-end transport encryption via,

e.g., TLS [268]. Correlating information across multiple flows and their packets is infeasible

in the absence of traffic and timing analysis. Clearly, CCN and related ICN architectures

do not offer this degree of privacy. Names, signatures, and even payloads are transported in

plaintext. To the best of our knowledge, this disparity has not been adequately addressed by

the CCN community. To this end, this section analyzes CCN data privacy issues and shows

how requests, responses, and a single request-response exchange can be made private. The

contributions are4:

• Privacy analysis of the CCN request and response protocol.

• Evaluation of weak privacy techniques based solely on CCN names and their secrecy.

• Requirements for strong privacy with properties similar to TLS.

• Discussion of practical techniques that can address identified privacy issues.

One of our primary conclusions is that data encryption, by itself, is insufficient for privacy.

Request names must have no correlation with data carried in a response, which strongly

contradicts the name-based model of CCN and other ICNs. This implies that there must

be some mapping between standard CCN names and information conveyed to the network.

Moreover, in the presence of powerful adversaries, this transformation cannot be determin-

istic, since that would lead to frequency analysis attacks. (We explore this attack in Section

4These issues are also discussed by Ghali et al. [146].

102

5.2.) This effectively invalidates caches and is functionally no different from end-to-end en-

cryption such as TLS in today’s Internet. In total, we find that, if privacy similar to IP

is desired, then many of the claimed benefits of CCN are lost, barring major architectural

changes made to accommodate enhanced levels of privacy.

5.1.1 Data Privacy Pitfalls

According to Pinkas et al. [253], “the common definition of privacy in the cryptographic

community limits the information that is leaked by the distributed computation to be the

information that can be learned from the designated output of the computation.” In network-

ing and communication protocols, this notion of privacy refers to the limits of information

leaked by traffic. This is a growing concern in recent years since pervasive monitoring of

network traffic was found to be standard practice. Such eavesdropping is now considered

a fundamental attack on privacy [114]. Other threats to privacy include correlation among

a user’s traffic flows or behaviors, identification of the user, disclosure of their personal

information, and secondary-use of personal information [88].

With the shift from host-based to data-centric communication, CCN changes how data is

retrieved and the way peers communicate. Recall that consumers issue a request for data

D with the name N , which we denote as D(N). In this context, N is the application name

of D. The network name N̄ carried in the wire-encoded packet and used to forward this

request need not equal N . However, in standard CCN, N = N̄ . We use the notation

D(N) and D(N̄) to refer to the data identified by the given application and network names,

respectively. These requests may contain other information to identify the desired content

object, such as KeyId or ContentId. In this section, we consider these and all other identifiers

to be contained in N and subsequently encoded in N̄ .

103

Content object C(N̄) carries D(N). Consumers may use different network names N̄0 and N̄1

when requesting D(N), in which case C(N̄0) 6= C(N̄1). This can occur if D(N) is uniquely

encrypted for each consumer. Conversely, it always holds that if C(N̄0) = C(N̄1) then both

responses carry identical application data D(N). Recall that it is not a requirement for a

content object to carry a CCN name. However, a content object always carries an explicit

or implicit identifier that can be matched to a value derived from the corresponding interest.

For example, if the content object C(N̄) does not carry a name, then its hash digest must

match ContentId in N̄ . Thus, for presentation clarity, we do not distinguish between content

objects with and without a name.

Privacy in CCN must be defined and assessed with respect to the requests and responses

that are conveyed in the network, i.e., N̄ and C(N̄). Generally, an adversary A may try

to recover N or D(N) from this information. Our goal in the remainder of this section is

to show what type of privacy is attainable based on the properties of N̄ and C(N̄). Before

doing so, we specify our notion of data privacy and how it differs from its IP counterpart.

We then describe the adversarial model and define relevant privacy terms.

Separating Privacy and Anonymity

In general, privacy is framed in terms of the endpoints that participate in a data exchange

rather than a property of the data itself. For example, privacy might mean that the commu-

nicated data leaks no private information about the user. Another notion of privacy might

be that identities of communicating endpoints, e.g., IP addresses, host names, and user IDs,

remain hidden. We claim that elements of data privacy and personal privacy, or anonymity,

are inappropriately mixed in general discussions of privacy. Therefore, we separate these two

notions and focus solely on problems surrounding data privacy.

104

To show why this separation is useful, consider the following scenario. Suppose an adversary

controls a pair of consumer- and producer-adjacent routers. Any (unmodified) requests

and responses forwarded through the compromised routers link the consumer and producer.

The adversary learns that (a) the consumer is fetching data from the producer or (b) the

consumer and producer are communicating. However, we do not consider this a data

privacy leak because consumer and producer linkability does not reveal information about

data transported between them. Assuming appropriate request and response protection,

consumer and producer linkability reveals no more than what is revealed by clients and

servers engaged in a TLS session in today’s Internet. Although the consumer and producer

do not have anonymity, their traffic remains private in absence of traffic analysis and other

side channels. If anonymity is required, a TOR-like mechanism such as ANDāNA [105] or

AC3N [309] can be used to decouple consumers from producers. In the rest of this section

we focus solely on the problem of data privacy.

Adversarial Model

We now define the adversarial model against which privacy is assessed. According to Cooper

et al. [88], there are at least three types of adversarial goals:

1. Correlate: Determine whenever any two consumers retrieve the same application data

D(N).

2. Identify: Discover or recognize that D(N) was retrieved.

3. Learn: Obtain information about D(N).

Learning information about D(N) from N̄ or C(N̄) is harder than a correlation or identifi-

cation attack. If an adversary learns information about D(N) given C(N̄) or N̄ , then it can

also perform a correlation or identification attack. The converse is not necessarily true. We

denote the adversaries with these goals as AC , AI , and AL, respectively.

105

An adversary with any subset of these goals may have different capabilities. One type

might only be able to observe a single request and response from a consumer, while another

type might observe all traffic from a set of consumers. One example of the latter would be a

malicious Wi-Fi hot spot observing traffic of all hot spot users. Adversaries are also classified

based on whether they are off-path or on-path, i.e., honest-but-curious (HbC) routers. An

adversary that can only capture traffic without being on the consumer-to-producer path has

a distinct disadvantage compared to the one that forwards traffic between a consumer and

producer. For instance, an off-path adversary eavesdropping on an encrypted link can only

observe encrypted traffic. Conversely, routers incident to that encrypted link can observe the

original packets. In that case, the adversary can correlate requests with responses more easily

and can also determine when two downstream consumers request identical or related content.

A more powerful adversary controls multiple routers on the consumer to producer path. For

example, an adversary which controls routers adjacent to communicating consumers and

producers can easily learn when a particular consumer is requesting a specific content by

inspecting the name.

We consider these capabilities to be characteristic of three distinct adversaries: an off-path

attacker, a single on-path honest-but-curious router, and a collection of at least two (dis-

tributed) on-path honest-but-curious routers. Table 5.1 shows examples of these adversaries.

Response Privacy

Response privacy is centered on preventing information leakage from data responses. Ideally,

an adversary should learn nothing from a response. We use a game-based definition to

capture this notion of privacy. Let NA and NN be the set of application and network names,

respectively, that can be assigned to data and bound to content objects. For every request

for D(N), N ∈ NA, there is a function r(N) that generates and returns a response C(N̄),

where N̄ ∈ NN (i.e., a network name for D(N)). In this game, A is given access to r(·)

106

Table 5.1: Data privacy adversary examples.

Goals
Capabilities Correlate Extract

Eavesdropper A user spying on encrypted
traffic between a hotspot and
neighbors with the goal of
identifying traffic patterns and
commonalities.

A user spying on encrypted
traffic to identify specially
marked or flagged content.

On-path HbC An access point gathering
statistics about how frequently
content is accessed.

An access point censoring or
restricting content based on its
name or payload.

Distributed
on-path

A pair of access points adja-
cent to consumers and a sin-
gle producer trying to discern
when certain content is re-
quested and by whom.

A pair of access points log-
ging when specific content is
requested.

via an oracle Or(·). Upon receipt of a name N , Or(N) returns C(N̄). A also has access to

an oracle to compute the inverse of r(·), O−1
r (·), which, upon receipt of C(N̄) will return

N = r−1(C(N̄)). The game works as follows.

• The challenger initializes and gives A access to Or(·), O−1
r (·), and NA.

• A issues a series of application namesN0, . . . , Ni−1 toOr(·) and obtains C(N̄)0, . . . , C(N̄)i−1,

respectively.

• A generates two names N0
i 6= N1

i and sends them to the challenger. The challenger

then generates a random bit b and returns C(N̄)b = r(N b
i) and sends it back to A.

• A continues to query Or(·) (including, if needed, names N0
i and N1

i). A can also query

O−1
r (·) for any data response (except C(N̄)b). When done, A outputs a single bit b′.

• The game outputs 1 if b = b′ and 0 otherwise.

We denote the output as DataGame(A, r). A wins if DataGame(A, r) = 1. We also consider

one other variant of this game whereA cannot access either oracle, denoted as LIMDataGame(A, r).

107

We define privacy with respect to r(·), e.g., data is private with respect to correlation attacks

if it is generated by a function r(·) that is also secure against correlation attacks.

Definition 5.1. r(·) is secure against correlation attacks if for any probabilistic polynomial

time (PPT) A it holds that

|Pr[DataGame(A, r) = 1]− Pr[DataGame(A, r) = 0]| ≤ ε(λ)

for security parameter λ and where A = AC.

Similarly, r(·) is secure against leakage and identification attacks if for any PPT A it holds

that

|Pr[LIMDataGame(A, r) = 1]− Pr[LIMDataGame(A, r) = 0]| ≤ ε(λ)

for security parameter λ where A ∈ {AL,AI}.

We now define weak and strong response privacy with respect to correlation and leakage

privacy.

Definition 5.2. A response has weak privacy if it is generated by a function secure against

leakage and identification attacks. A response has strong privacy if it has weak privacy and

is generated by a function secure against correlation attacks.

Request Privacy

Similar to response privacy, request privacy is about information leaked by requests and

network names. However, in contrast to response privacy, contents of a response may com-

promise privacy of the corresponding request. This is possible if C(N̄) reveals information

about N or D(N), e.g., if C(N̄) is part of a well-known media file. This complicates our no-

108

tion of request privacy since we must also assume A can observe a response associated with

each request. Specifically, let A be an adversary similar to AI whose goal is to determine

D(N) given N̄ , i.e., to recognize that name N̄ corresponds to some data item D(N). We

assume that application names are transformed by some function q(·, ·) to a network repre-

sentation before interests are issued. We model this transformation as q : NA × N+ → NN ,

where NN is the set of network names. (We require |NA| ≤ |NN |.) The second parameter

(from N+) denotes the length of the application name prefix that is not modified by the trans-

formation. For example, q(/a/b/c, 1) would translate the suffix /b/c but leave the prefix

/a/ intact. In current CCN, q(·, ·) is simply the identity function: an application name N is

the same name that would be carried by an interest in the network.

We now define a request indistinguishability game, wherein A is given access to q(·, ·) via an

oracle Oq,i∗(·) that computes the transformation after segment i∗ of the name. That is, given

a name N , Oq,i∗ returns N̄ = q(N, i∗). A also has access to an oracle to compute the inverse

of q(·, ·), O−1
q,i∗(·), which, upon receipt of N̄ returns N = q−1(N̄ , i∗). The game proceeds as

follows.

• The challenger initializes and gives A access to Og,i∗(·) and O−1
g,i∗(·). A is also given

NA and NN .

• A issues a series of names N0, . . . , Nj−1 to Oq,i∗(·) and collects the results N̄0, . . . , N̄j−1.

• A presents a pair of names N0
j and N1

j to the challenger. It is required that the first

i segments of N0
j and N1

j are identical. The challenger generates a random bit b and

returns N̄ b
j = q(N b

j , i
∗) to A.

• A continues to make queries to Oq,i∗(·). A can also issue a request for any name as

well as query O−1
q,i∗(·) with transformed names except N̄ b

j . Next, A outputs a single bit

b′.

• The game outputs 1 if b′ = b and 0 otherwise.

109

We denote the output as NameGame(A, q). A succeeds if NameGame(A, q) = 1. We also

consider a variant of this game where A has no access to the oracles called INDNameGame.

Here, A relies solely on the response from the challenger and its queries to the network when

making its decision.5 We use it to define name privacy with respect to q(·, ·).

Definition 5.3. q(·, ·) is secure against correlation attacks if for any PPT A it holds that

|Pr[NameGame(A, q) = 1]− Pr[NameGame(A, q) = 0]| ≤ ε(λ)

for security parameter λ where A = AC.

Similarly, q(·, ·) is secure against leakage and identification attacks if for any PPT A it holds

that

|Pr[INDNameGame(A, q) = 1]− Pr[INDNameGame(A, q) = 0]| ≤ ε(λ)

for security parameter λ where A ∈ {AI ,AL}.

We now define weak and strong request privacy.

Definition 5.4. A request has weak privacy if it is secure against leakage and identification

attacks. A request has strong privacy if it has weak privacy and is secure against correlation

attacks.

Communication Privacy

If a request and response are both private, then the entire exchange is private. As before,

there is a strong and weak form of communication privacy. We define both with respect to

request and response privacy as follows.

5This variant corresponds to A that does not possess offline computation resources.

110

Definition 5.5. A request and response have weak communication privacy if at least the

request and response have weak privacy. Similarly, a request and response have strong com-

munication privacy if both the request and response have strong privacy.

5.1.2 Eavesdropping Adversaries

Eavesdropping is the weakest attack on privacy. An eavesdropping adversary might not be

able to capture any packet at will and may not be able to observe all request and response

pairs. It can, however, collect some traffic for offline analysis. In this section we show how

this simple capability has strong implications on mitigations for the main privacy threats

outlined in Section 5.1.1.

Data Generation Functions and Response Privacy

Privacy against leakage and correlation attacks for responses is closely related to the concepts

of indistinguishable and chosen-ciphertext-attack (CCA) security [180]. We show this in

Theorems 5.1 and 5.2.

Theorem 5.1. Responses must be encrypted with IND-secure encryption to have weak pri-

vacy.

Proof. We define r(·) in LIMDataGame to be an IND-secure encryption function over gener-

ated data. To show that responses are secure against leakage attacks, we must show that

A only wins the LIMDataGame with probability negligible in λ. In this case, A generates

and submits N0 and N1 to the challenger which generates a random bit b, and returns

Db = r(N b), as before. Now, consider an alternate IND-secure encryption function h(·) that

encrypts N0 or N1 instead of data to which these names are bound. Since there is a one-

to-one correspondence between names and data (i.e., N0 and N1 are bound to D0 and D1,

111

respectively), encrypting D0 or D1, using h(·), is no different from directly encrypting N0 or

N1, using r(·). Therefore, A’s probability of successfully guessing b by examining Db is no

more than its probability of correctly guessing b by examining encrypted N0 and N1. The

latter is bounded by the probability of A correctly guessing b in the IND-secure encryption

game, which is negligible.

Theorem 5.2. Responses must be encrypted with CCA-secure encryption to have strong

privacy.

Proof. We define r(·) in DataGame to be a CCA-secure encryption function over generated

data. As in the proof of Theorem 5.1, names form a one-to-one correspondence with data.

Thus, there is no difference between encrypting names or corresponding data using r(·). Also,

if r(·) were to encrypt names, then DataGame would be identical to the standard CCA-secure

encryption game. Therefore, since the probability of A winning such a game is negligible in

λ, it follows that A’s probability of winning DataGame is also negligible in λ.

Name Transformations & Request Privacy

Information leaked from the request gives A some advantage in winning NameGame and

INDNameGame. Therefore, to assess the capabilities of A we must capture information

leaked by q(·, ·). To begin, observe that the vanilla CCN identity function q(·, ·) provides

no privacy since the identity function does not change names in any way. A’s probability of

correctly matching the challenge name to one of its inputs is always 1.0.

Clearly, the identity function is a trivial transformation, so we explore alternatives. Trans-

formation functions may operate on one or more name segments at a time. For example,

consider the translation function in Algorithm 7. F is a cryptographic hash function, which

transforms each segment after a given prefix segment number into its hash digest. We call

this type of transformation is structure preserving since it does not change the hierarchy of

112

Algorithm 7 SuffixHash name transformation

Require: N , i, F (·)
Ensure: N̄

1: N̄ = N [1 : i], l = |N |
2: for j = i+ 1→ l do
3: N̄ [j] = F (N [j])

4: return N̄

name segments; it only changes each name segment value. A transformation is not structure

preserving if it modifies hierarchical information in a name. For example, the transformation

in Algorithm 8 is not structure preserving. This is because it replaces the suffix after index

i with the hash of that suffix. Thus, any names that have more than l > i segments will

always be transformed into a name with exactly (i+ 1) segments.

Algorithm 8 SuffixHashFlatten name transformation

Require: N , i, F (·)
Ensure: N̄

1: N̄ = φ, l = |N |
2: for j = 1→ i do
3: N̄ .Append(N [j])

4: N̄ .Append(F (N [i+ 1]|| . . . ||N [l])
5: return N̄

A transformation is uniform if, for every input, it produces output of the same length. This

means that uniform structure preserving transformations transform each individual segment

of a name to some fixed-length value. Conversely, a uniform non-structure-preserving trans-

formation yields suffixes of equal length.

We now consider some guiding criteria for achieving different levels of request privacy.

Theorem 5.3. Weak and strong request privacy transformations are uniform and non-

structure-preserving.

Proof. Let q(·, ·) be a transformation that is neither uniform nor structure-preserving. More-

over, assume it also enables weak and strong request privacy. Let N0 and N1 be twoA-chosen

113

names with different numbers of segments. Upon receipt of N0 and N1 in NameGame, the

challenger returns N̄ b = q(N b, i∗). Since |N0| 6= |N1|, it is trivial for A to determine b since

either |N̄ b| = |N0| or |N̄ b| = |N1|. This contradicts the assumption that q(·, ·) provides

strong and weak privacy.

Now consider N0 and N1 that have the same number of name segments but, for at least

one segment i, |N0[i]| 6= |N1[i]|. Upon receipt of N0 and N1 in NameGame, the challenger

returns N̄ b = q(N b, i∗). To determine b, A looks for the segment i where |N̄ b[i]| = |N0[i]|

and |N̄ b[i]| 6= |N1[i]| (or vice versa). This exists since q(·, ·) is not a uniform transformation.

Therefore, q(·, ·) does not provide strong or weak privacy since A can always win NameGame.

We conclude that structure-preserving transformations offer neither weak nor strong request

privacy. Taking this into consideration, there are at least two types of cryptographic primi-

tives we can use to build transformations suitable for request privacy: hash and encryption

functions. Hash functions are uniform by definition. However, encryption functions are not

necessarily uniform. Therefore, encryption-based transformations must involve some form

of padding to ensure uniformity.

Consider the SuffixHashFlatten transformation in Algorithm 8. This function replaces the

suffix of the input name with its hash. In practice, however, using F does not yield request

privacy. Since F is a publicly computable function, the unpredictability (entropy) of its

output is directly related to the entropy of its input.

Let x ∈ X denote an element in the support of a random variable X. Traditional Shannon

entropy H of X is defined as

H(X) = −
∑
x∈X

P (X = x) log(P (X = x)).

114

The chain rule is useful to quantify entropy lost when new information is presented. Formally,

the entropy of X, if conditioned on the entropy of Y , can be decreased by at most the latter,

i.e., H(X|Y) = H(X, Y)−H(Y), where H(X, Y) is the joint entropy of X and Y defined as

H(X,Y) = −
∑
x∈X

∑
y∈Y

Pr(X = x, Y = y) log(Pr(X = x, Y = y)).

This formulation can be generalized to support computing the conditional and joint entropy

of an arbitrary number of random variables. With it, we can quantify the entropy of names

if we treat individual name segments as Discrete Random Variables (DRVs) and an entire

name as a sequence of DRVs. For example, names of k segments can be viewed as a sequence

of k DRVs. By using a large sample set of names, we can compute the entropy of the i-th

segment DRV as well as its conditional entropy based on all j < i segment DRVs. As input

data we used the Cisco URI dataset available from [11]. It consists of 13, 549, 122 unique

URIs. The average length of each URI is 57.4B with median 52B and standard deviation

33.182B. Across all URIs, the average number of segments is 6.67 with median length 6

and standard deviation 2.212 segments. Entropy of individual name segments, which are

plotted in Figure 5.1a, show that single-segment entropy is skewed with a peak at the 5th

name segment. When name segments are considered in unison the results are quite different.

Figure 5.1b shows how conditional entropy significantly degrades as more name segments

are considered. The implication is that the prefix of a name leaks a significant amount of

information about its suffix. While this dataset may not be representative, we believe that

results would be similar for larger and even more diverse datasets.

These results lead us to conclude that (parts of) content names have very little entropy

and are highly predictable. This is intuitive since URIs are meant to be meaningful and

therefore predictable. Thus, we need strong randomness guarantees for the name translation

function. It must not leak any information about the input application names. Consequently,

it must be at least an IND-secure encryption function. Or, more generally, it must be a (non

115

(a) Single segment entropy (b) Joint and conditional entropy across multiple seg-
ments

Figure 5.1: Name segment entropy

length-preserving) cryptographic pseudorandom function (PRF). PRFs are derived from

PRF families that take additional inputs, such as a random seed or key to produce a specific

PRF. Someone with knowledge of this additional input can compute the output of the PRF

for any input since these functions are deterministic. For weak request privacy, the PRF

cannot be computed by A. Otherwise, A could compute the PRF value without the oracle

and easily win NameGame. This is captured in the following theorem.

Theorem 5.4. A name transformation function must be a PRF to enable weak request

privacy.

Proof. If the transformation is a PRF then A cannot compute the transformation output

without the oracle. Moreover, by the properties of the PRF, the outputs are independent

and uniformly distributed across the range of the function. This means that A’s probability

of distinguishing the translation of N0 from N1 is negligibly small.

Responses must also be encrypted for request privacy. If responses are not weakly private

then they may reveal information about data or application names. Consequently, a request

could identify specific application data.

116

We now make two final remarks with respect to the translation function. First, it must be

easily invertible producers can recover N from N̄ . Thus, ideally, it should be a cryptographic

pseudorandom permutation (PRP), which is an invertible PRF. Second, PRFs and PRPs

are length-preserving by definition. This means that they are not uniform, which violates

our previous criteria. There are two ways to make the translation uniform: (1) compute

the PRP of the cryptographic hash of N , i.e., PRP (F (N)), or (2) pad the input prior to

translation. We discuss (2) in Section 5.1.4. For option (1), it is reasonable to expect the

producer to pre-compute a hash table that maps F (N) to N . This would allow the producer

to determine the pre-image of F (·).

Strong Request Privacy

In practice, a PRF is insufficient for strong request privacy. Since PRFs are deterministic,

an adversary with oracle access can check the challenger’s response and always win. Ideally,

the oracle’s output should always be randomized and reveal nothing about the input. In

practice, this means that the oracle must provide semantic security for its outputs [180].

Such an oracle will never, with overwhelming probability, produce the same output given

the same input. This is captured in the following theorem.

Theorem 5.5. Semantically secure encryption is necessary for strong request privacy.

Proof. Let q(·, ·) be a transformation that is semantically secure [180]. Access to Oq,i∗(·)

therefore does not aid A in NameGame. Moreover, since q(·, ·) behaves as a PRF, A’s

advantage in distinguishing N̄0 and N̄1 is bounded by ε(λ). Thus, q(·, ·) provides strong

request privacy.

117

5.1.3 On-Path Honest-but-Curious Adversaries

We now turn to on-path HbC adversaries that can observe requests and responses in transit

between consumers and producers. Recall that communication privacy considers both the

request and response of a data exchange. The composition of these elements determines the

achievable degree of privacy. In Section 5.1.1, we showed that weak response privacy requires

an IND-secure encryption scheme. Similarly, in Section 5.1.1, we proved that weak request

privacy requires at least a name translation function using a keyed PRF. For strong privacy,

requests and responses require a semantically secure (CCA-secure) encryption scheme. These

composition rules are reflected in the following corollaries.

Corrolary 5.1. A request-response pair have weak communication privacy if the latter is

protected by an IND-secure encryption scheme and the former is transformed by a keyed

PRF.

Corrolary 5.2. A request-response pair has strong communication privacy if the former

is transformed using a CCA-secure encryption scheme and the latter is protected using a

similar scheme.

Note that our definitions do not depend on the exact capabilities of A. For example, consider

the strongest adversary that controls every router on the path between multiple consumers

and a single producer. If requests and responses are strongly private, A cannot succeed in

a correlation, identification, or leakage attack. A can only link the communicating parties.

As discussed in Section 5.1.1, this is more of an issue of anonymity than privacy.

5.1.4 Privacy in Practice

We now discuss application design patterns that can achieve privacy variants discussed above.

However, since we can not view requests and responses in isolation, we only focus on design

118

patterns for communication privacy. This is because most realistic eavesdropping adversary

would be capable of observing bi-directional traffic, i.e., both requests and responses.

Assumptions

As discussed earlier, a PRF or semantically secure encryption scheme is needed for request

privacy. Hence, the consumer must have some information about the producer before issuing

the request. Clearly, a request transformation function is only useful if the producer can

efficiently compute its inverse. Also, we assume that the name transformation index, i.e.,

the minimal routable prefix, is known to both consumer and producer.

Weak Privacy

Recall that weak privacy allows correlation and no identification or leakage. This degree

of privacy is unsuitable for highly sensitive data exchanges, such as online banking or e-

commerce transactions. However, it might be suitable for less sensitive applications, e.g.,

content distribution networks (CDNs) which distribute static content. Concrete examples

include Netflix, Spotify, Imgur and Flickr. Applications can use CDNs by asking for content

with the same name. As long as a name does not reveal any information about the cor-

responding content, the CDN does not need to know to what data it refers. A CDN node

maps a request to a response based on exact name match. We believe this general model is

a good choice for weak communication privacy, wherein requests are protected by a keyed

PRF and responses by an IND-secure encryption scheme.

To support this type of privacy, there are two cases in terms of the producer and consumer(s)

relationship. In the first one, they share a secret, such as a previously established key. Let k

be a unique key derived, e.g., via a PRF, from this shared secret. We could then instantiate

q(·, ·) and r(·, ·) as an IND-secure encryption scheme based on a PRP indexed by k.

119

Now suppose the producer and consumer have no pre-shared secrets. Then, before requesting

content from a producer, a consumer must know the former’s public key. In this case,

q(·, ·) can be any IND-secure (and thus CPA-secure) public key encryption function, e.g.,

RSA. The response must be likewise protected using IND-secure encryption. One way is to

encrypt it using the consumer’s public key, which the consumer could include in the request.

Alternatively, the consumer could pick a one-time symmetric key and also include it in the

original request. Of course, this does not provide forward secrecy, which is another aspect

to consider.

This is clearly an inefficient solution since it effectively removes the utility of router caches,

which is the primary reason one would choose weak privacy. A better approach would be

to encrypt the content under a broadcast encryption scheme, e.g., [67]. Such schemes are

CCA-secure and therefore suitable for our setting since IND-secure encryption follows from

CCA-security. However, they only work if the consumer already has the decryption keys,

which violates our assumption that consumers and producers have no pre-shared secrets.

Therefore, it is unclear how to enable efficient weak privacy with caching for public content,

i.e., content that can be requested by anyone without authentication or authorization.

Name Padding

Since IND-secure encryption is required for weak privacy, we must also address the issue

of name padding to make these transformations uniform. Theorem 5.3 states that every

encrypted name in a given namespace must be of the same length. This is only possible if all

names are padded to some maximal length. The current CCN packet format limits the total

name length to 64KB [225]. In practice, names are much smaller. To verify this, we analyzed

names in the Unibas dataset from The Content Name Collection [11], which contains unique

URLs submitted by users to URL shortener websites. We converted these URLs into a CCN-

compatible name format. For example, the URL http://www.domain.com/file.html is

120

converted into /com/domain/file.html. Table 5.2 shows some characteristics of the Unibas

dataset. The standard deviation of the number of segments in a name is 8.14 and the mean

length per segment is 10.39B. Even with these smaller sizes, performing padding universally

across all namespaces would result in significant overhead: the size of an encrypted name

would be about 800KB (based on the maximum segment length, which is well beyond the

maximum threshold for CCN packets). For links with small(er) MTUs, e.g., in the range

[1, 500B, 9, 000B], the performance impact would be very heavy since it would almost always

induce fragmentation. Even with secure fragmentation schemes such as those in [139] and

[230], the overhead would be non-negligible.

Fortunately, names are not distributed uniformly. Table 5.3 illustrates the name distribution

per number of segments in each name. It shows the number of names in the dataset that

contain n segments for n ∈ [1, 20]. Note that: (1) almost 30% of names have 5 segments,

and (2) names of up to 20 segments account for 99.876% of the dataset. Thus, maximum

padding size is much smaller than the maximum name size.

Furthermore, padding could be applied on a per-namespace basis. For example, in names-

pace /, the maximum padding length is around 800KB. However, under the namespace

/netflix/, the maximum name length is likely much smaller. Since an application has

complete control over its namespace, it can specify a maximum length for consumers to use

in padding.

As a final note, this requires i∗ to be as long as the minimal routable (unencrypted) prefix

needed to forward encrypted requests to the producer. For example, suppose that all interests

in the /netflix/ namespace were routable. We would need to set i∗ = 1, since anything

beyond that would leak information about the request. This highlights the relationship

between namespace ownership, routing, and privacy.

121

Table 5.2: Unibas dataset characteristics.

Names Name segments Segments per Name

Number of
names

870, 896, 633
Total

number of
segments

4, 855, 203, 042
Total

number of
segments

4, 855, 203, 042

Average
name length

(bytes)
57.95

Average
segment
length
(bytes)

10.39
Average

segments per
name

5.57

Name length
standard
deviation

77.60

Segment
length

standard
deviation

30.02

Segments
per name
standard
deviation

8.14

Minimum
name length

(bytes)
1

Minimum
segments

length
(bytes)

1
Minimum

segments per
name

1

Maximum
name length

(bytes)
764,867

Maximum
segments

length
(bytes)

764,867
Maximum

segments per
name

210, 658

Strong Privacy

Strong privacy is suitable for applications for which security and privacy are more important

than caching. Examples include: banking, e-commerce, and voting. Fortunately, in such

cases, there are fewer design decisions, since both requests and responses require semantic

or CCA-secure encryption. This immediately implies the need for a session-based protocol

in which no request and response can be correlated. To the best of our knowledge, there

is only one such protocol for CCN: CCNx Key Exchange (CCNxKE) [228]. Assuming only

knowledge of the minimal routable prefix for a given of content, CCNxKE allows consumers

and producers to create a secure session with forward-secure keys to encrypt both requests

and responses using a CCA-secure encryption scheme. Clearly, strong privacy destroys any

benefits of shared caching for consumers. We believe this is an important takeaway from our

work.

122

Table 5.3: Name distribution per # of segments.

Segment count n Number of names Percentage

1 13, 952 0.002%

2 141, 904 0.016%

3 71, 327, 647 8.190%

4 187, 307, 048 21.507%

5 253, 852, 565 29.148%

6 144, 130, 578 16.550%

7 93, 837, 904 10.775%

8 70, 875, 144 8.138%

9 25, 611, 959 2.941%

10 10, 464, 092 1.202%

11 3, 973, 961 0.456%

12 4, 546, 842 0.522%

13 1, 206, 905 0.139%

14 835, 124 0.096%

15 844, 552 0.097%

16 195, 491 0.022%

17 121, 486 0.014%

18 317, 628 0.036%

19 168, 228 0.019%

20 50, 742 0.006%

Total 869,823,752 99.876%

5.1.5 Privacy and Auxiliary Information

Weak request and response privacy is attainable only up to a certain extent. If A has

additional information about requests or responses, it can gain an advantage in weak pri-

vacy games. This is because such games permit correlation, which leaks information about

content. Suppose that A has some a priori information about the popularity of some con-

tent. A can use frequency of requested content and popularity of known content to gain a

non-negligible advantage in winning the game.

In more detail, consider request privacy in the presence of auxiliary information. We assume

that A can eavesdrop on links and thus learn requests and responses. Let L be the set of links

123

that A controls and let Peek(L) be a function that returns a packet from one of those links.6

Let Q(N) and R(N) be sets of requests and responses, respectively, for content with name

prefix N . We model mappings from Q(N) to R(N) as a weighted and directed bipartite

graph with edges from Q(N) to R(N). An edge (Q,R) with weight l, where Q ∈ Q(N) and

R ∈ R(N), means that request Q returns response R with probability l/|R(N)|. In effect,

weight indicates popularity of a given request-response pair.

In this model, request privacy is only possible if the in-degree (deg−) for every R and the

out-degree (deg+) for every Q are equal and the weights of every edge are equal. This means

that auxiliary information (frequency and popularity) does not help A distinguish between

two different responses R and R′ since each is equally likely to be the output from a randomly

chosen request. This leads to the following observation.

Theorem 5.6. Weak request privacy requires that:

1. deg+(Qi) = deg+(Qj) for all Qi, Qj ∈ Q(N).

2. deg−(Ri) = deg−(Rj) for all Ri, Rj ∈ R(N).

3. The distribution of edges from Q(N) to R(N) is uniform.

4. Every edge from Q(N) to R(N) has equal weight.7

Proof. Assume A has additional information about R(N), e.g., that the edge distribution

from Q(N) to R(N) is not uniform. We need to show that A can build a distinguisher D that

wins NameGame with probability greater than ε(λ). Let k = max{1, d|Q(N)|/|R(N)|e}, be

the expected in-degree for each response R ∈ R(N). That is, for a uniform edge distribution,

k is the number of requests that map to each response. Let D be a distinguisher created using

Peek(L) and given to A in NameGame. D observes the network using Peek(L) to determine

the frequency of individual requests. A runs D for a polynomial amount of time in order

6Note that this is not the same as A accessing either oracle in request or response privacy games. Also,
A can only peek on unencrypted links.

7If the weight were not uniform then some responses would be more popular than others. This is what
we exploit when constructing a distinguisher in the proof.

124

to collect this frequency information. Then, A samples two requests (names) Q0 and Q1

with the lowest and highest probabilities, respectively, from its a priori known distribution.

Specifically, if Pr[Qi] is the popularity of a given name (query) Qi, then Q0 and Q1 are

chosen as:

Q0 = arg minQi Pr[Qi]

Q1 = arg maxQi Pr[Qi]

A then provides N0 and N1 – the names of Q0 and Q1 – to the challenger, which responds

with Nb. Upon receipt, A queries D with Qb, obtained from Nb, to determine the relative

frequency f of Qb based on the collected frequency statistics. If f > k/R(N), then A outputs

b′ = 1; otherwise, it outputs b′ = 0.

The winning probability can be expressed as:

Pr(b′ = b) = Pr(b = 1 ∧ b′ = 1) + Pr(b = 0 ∧ b′ = 0)

Using Bayes’ Theorem, this can be rewritten as:

Pr(b = 1 ∧ b′ = 1) + Pr(b = 0 ∧ b′ = 0) =

Pr(b = 1) Pr(b′ = 1|b = 1) + Pr(b = 0) Pr(b′ = 0|b = 0)

From the construction of D, it follows that Pr(b′ = 1|b = 1) = Pr[Q1] and Pr(b′ = 0|b =

0) = Pr[Q0]. Let p1 and p0 denote these respective probabilities. Also, since b is sampled at

random, Pr(b = 1) = Pr(b = 0) = 0.5.

In order for A to win INDNameGame, it must be true that 0.5p0 + 0.5p1 > k/D(N) + ε(λ).

We can rewrite this as p0 + p1 > 2k/D(N) + ε(λ), where p0 and p1 are the minimum and

125

maximum probabilities in the popularity distribution. Clearly, there are distributions where

this inequality holds for any k. One example is the Poisson distribution.

To summarize, weak request privacy is difficult to achieve, since some requests are always

more popular than others. Moreover, since content popularity is not controllable by the

producer, it cannot expect to enforce uniform popularity.

Implications The frequency analysis attack succeeds because responses are not generated

with equal probabilities. An intuitive way to mitigate the attack is to ensure that every

response is unique. One way to realize this is by requiring a producer to encrypt each

response separately and uniquely. However, this immediately obviates the main benefit of

caching.

An alternative is for a router to individually re-encrypt cached content before passing it

downstream. (Thus, it would be infeasible to correlate content coming into a router with

another content later leaving the same router.) Unfortunately, this seems to be possible

only via so-called proxy re-encryption or re-randomizable encryption techniques which are

typically based on public key schemes, e.g., ElGamal. More importantly, these techniques

would require the entire content to be re-randomized, which is likely to be prohibitively

expensive. Specifically, this would rule out the use of traditional (and efficient) hybrid

encryption. Therefore, bulk content encryption, re-encryption and eventual decryption would

all have to be performed using purely public key cryptography.

Even if the above were not an issue, there would remain a problem due to requests for

various names not being uniformly distributed. One counter-measure is to encrypt each

request using a CPA-secure encryption scheme. Then, two requests for the same content

would carry different names that cannot be correlated. This would, once again, negate the

main benefit of caching. Thus, in the presence of A that has auxiliary information, weak

126

privacy only seems possible if both requests and responses are individually encrypted, making

router caching useless, except for re-transmissions.

5.2 Static Content and Frequency Analysis Attacks

In the previous section we showed that, if the adversary has additional auxiliary, information

about the requested content such as its popularity within a given namespace, it can recover

the content name even if PRF-transformed names are used. The cause is interest linkability,

i.e., ability to determine when two interests refer to the same content. We consider it a

privacy leakage when the adversary can learn any information about underlying interests

based on their PRF-transformed names.

This type of leakage is not unique to CCN. If we consider CCN as a generic key-value store

where PRF-transformed interests are keys, and corresponding content objects are values,

the problem at hand is analogous to privacy leakage in encrypted databases. This topic has

been extensively studied in recent years [237]. In this section, we apply to CCN attacks from

the research literature on privacy of encrypted databases. Specifically, we study adversarial

ability to learn request and response plaintext using information learned from eavesdropping

on encrypted traffic. In doing so, we try to answer the following questions:

• How does the accuracy of adversary’s auxiliary information influence effectiveness of

privacy attacks?

• How does router caching affect attacks, and how does it relate to topological distribu-

tion of the adversary?

• Can replicating or partitioning content among multiple producers decrease effectiveness

of these attacks, and if so, to what degree?

127

This section makes the following contributions8:

• Given accurate auxiliary information about content popularity distribution and suffi-

ciently many request samples, the adversary can, with very high probability, correctly

map some encrypted content packets to their plaintext counterparts.

• Privacy attacks are hindered by router caching and content replication since they ef-

fectively reduce the sample size for an adversary.

• Knowledge of a namespace is sufficient for the adversary to learn the perceived popu-

larity of content published under that namespace. This has strong implications on how

much of a namespace should be public or otherwise discoverable by anyone, especially,

when content names correspond to private data.

5.2.1 Threat Model

This section describes the attack on privacy and all relevant notation. We also present the

assumed adversary model and auxiliary information.

Notation

Let D(U) be a probability distribution over some universe of elements U. When it can

be inferred from context, we omit U from D(U). Let X denote a random variable for a

distribution over U. WhenX is discrete, fX(x) is the corresponding probability mass function

(PMF). For simplicity, we also use D(x) to denote fX(x). Given any two distributions D1

and D2 over the same finite domain U, their statistical distance is computed as:

∆(D1,D2)
∆
= sup

x∈U
|D1(x)−D2(x)| = 1

2

∑
x∈U

|D1(x)−D2(x)|

8These are also discussed by Ghali et al. [148].

128

(This is equivalent to the well-known Kolmogorov-Smirnov statistic.) Frequency distribution

FU(n, x) represents the number of times x ∈ U occurs after taking n samples from D(U). For

any n > 0, let ri denote the i-th largest value of FU(n, x)|x∈U, where r1 = maxx∈U{FU(n, x)}

and r|U| = minx∈U{FU(n, x)}.

Privacy Primer

As previously discussed, weak privacy is preferable in order to retain most benefits of CCN.

However, it is subject to so-called frequency analysis attacks. If A has auxiliary information

about underlying content [146]. Such information can be extracted from a variety of sources,

including the target application, e.g., Netflix or Spotify, publicly-available statistics, e.g.,

income statistics for a certain demographic or public financial records, or prior versions of

content, e.g., a history of Netflix or Spotify media catalogs. In these attacks, A uses its

knowledge about content popularity, along with observed interests, to infer which interest

corresponds to which content. As mentioned above, this is similar to attacks on encrypted

databases. In that model, A corrupts a server storing an encrypted database and observes

database queries. A’s goal is to determine the plaintext value of each encrypted record based

on auxiliary information and observed queries [237].

The attack scenario in the database scenario does not map directly to the frequency analysis

attack outlined in [146]. In the former, once A compromises the target server, it can observe

all queries. In contrast, in CCN, A is a collection of one or more compromised routers that

observe network traffic. Therefore, by compromising a single router, A does not automati-

cally get access to all queries for the target content. This is a critical fact in CCN: distributed

nature of the network (particularly, existence of router caches) means that A has far less

information than in the database scenario. In this work, we explore how this gap affects A’s

success in attacking CCN privacy.

129

Adversarial Model

We assume that A is a distributed and active adversary that aims to learn information

about statically encrypted, or weakly private, content shared among multiple consumers.

Encryption is not ephemeral, i.e., packets are not encrypted in transit between producers and

consumers. Thus, we assume that A can correlate interest and (encrypted) content packets

referring to the same application data. A can compromise a subset of routers on the path

between arbitrary consumers and the nearest copy of the requested content. Once a router

R is compromised, A can observe all packets that R processes. A can also spawn malicious

consumers that probe the network for content and can populate non-compromised routers’

caches with copies of that content. However, A can not compromise either consumers that

issue interests for content or producers that respond to interests with encrypted content

packets. A realistic example of A could be a state-sponsored entity or a set of colluding

Internet Service Providers (ISPs).

Adversarial Information

Let P be a set of application data items, and let C be the set of encrypted content packets

used to carry items in P through the network. That is, for each p ∈ P, there is an encrypted

form in C. Let T : C→ P be the truth mapping from the encrypted content to their plaintext

data counterparts. We assume that all consumers issue interests for data in P according to

some real popularity distribution DR(P).

A is given access to some fixed auxiliary information about this popularity distribution,

called DAA(P). Moreover, at any time t, A has access to a snapshot frequency distribution,

denoted FA : T × C → N. That is, for each item c ∈ C, FA(t, c) is the number of times c

was observed by A up t. The set of items from C observed by A at time t is O(t). Using

FA, A can create an empirical distribution DE(C) of the popularity of each observed item.

130

If A is a global adversary, then DE(C) approximates DR(P) under the truth mapping T .

Essentially, DAA(P) is A’s approximation of DR(P).

5.2.2 Frequency Analysis Attack Overview

We now describe the frequency analysis attack adapted from the encrypted databases sce-

nario [237]. In our setting, encrypted or otherwise obfuscated interests are analogous to

queries for encrypted database records. The entire network, comprised of caches and con-

tent, is equivalent to one giant database. The adversary can eavesdrop on all (or parts of)

the network (database) and, as a result, can view all (or some) interests and content (queries

and records). This access, along with auxiliary information about popularity of content

(records), is sufficient to perform the attack. More concretely, the core idea is as follows:

A learns (or is given) some auxiliary information about popularity distribution of application

names, or content, i.e., P. A also observes empirical popularity distribution of encrypted

interests for encrypted content, i.e., C. In doing so, A seeks to learn T , i.e., which items

in C map to items in P. A succeeds if it learns any of these with non-negligible success

probability.

In a frequency analysis attack at time t, A combines DAA(P) and FA(t, c), as follows: First,

A ranks items in FA(t, c) in order of descending popularity. Then, for each ci ∈ O(t) in

decreasing order according to FA(t, c), A guesses that ci corresponds to the i-th most popular

item pj based on DAA(P).

Let sort be a function that sorts a histogram in descending order of frequency. Algorithmi-

cally, the attack works as follows:

1. ρ← sort(Hist(O(t)))

2. π ← sort(Hist(P))

131

3. Compute a mapping α : C→ P such that, for all c ∈ C:

α(c) =

π[Rankρ(c)] if c ∈ O(t)

⊥ if c /∈ O(t)

The result of the attack is α, the guessed truth mapping from encrypted data items to their

plaintext form.

Accuracy of the attack is defined as follows: Let R(α, T) be a function that counts the

number of A’s correct guesses. A correct guess is such that α(c) = T (c). R(·) computes the

total number of guesses by A. We say the match ratio is the total number of correct guesses

divided by |P|. By itself, the match ratio may be misleading, e.g., if the dataset is large and

has a long tail with items that have near-equal popularities. Thus, we are also interested in

partial accuracy of the attack. We define partial accuracy as a function S(·) that takes an

index i ≤ |ρ| along with ρ, α, and T and computes:

S(i, ρ, α, T) =
i∑

j=1

∑j
k=1 Match(j, ρ, α, T)

|ρ| ,

where:

Match(i, ρ, α, T) =

1 if α(ρ[i]) = T (ρ[i])

0 if α(ρ[i]) 6= T (ρ[i])

Intuitively, at index i, this computes fraction of guesses that are correct up to i. For example,

it is likely that S(1, ρ, α, T) ≈ 1.0 if A’s auxiliary information and observances are accurate.

In some cases, the total accuracy of the attack might not matter, while it might be important

if A can correctly guess only a small number of items with a very high probability.

132

5.2.3 Simulation Methodology

We now describe the simulator for evaluating the frequency analysis attack. Its source code

is available online at [329].

Content Distributions

To assess the attack we need realistic information about popularity distributions. Since

there are no real-world deployments of CCN (or other ICN architectures), we must rely on

information from current web content traces. Fortunately, there has been a great deal of

work studying the popularity of web content. Breslau et al. show in [69] that web content

does not follow a strict Zipf distribution, as often suggested. Instead, it adheres to a Zipf-like

distribution where the i-th most popular page is requested with probability proportional to

i−α, where α ∈ [0.6, 2.5] [51, 178, 270, 233, 198, 173, 99]. Thus, unless stated otherwise, we

hereafter use the Zipf distribution to model real content popularity.

Simulator Overview

We implemented a custom CCN simulator for this study. We chose not to use available

ccns3Sim or ndnSim because we do not need to take into account network behavior beneath

CCN. The attack is sufficiently generic that we only need a way to control interest and

contents. Our simulator allows a user to create an arbitrary network topology G composed

of sets of: consumers C, routers R, and producer(s) P. Once created, A is realized as a

subset of compromised entities. Each router has a cache with probability pc. We represent a

network configuration by its topology graph G = (C,R,P,RA), where RA represents routers

133

(a) Uniform popularity and auxiliary information

0 20 40 60 80 100
Content Rank

0.000

0.005

0.010

0.015

0.020

0.025

M
at

ch
 R

at
io

(b) Zipf popularity and uniform auxiliary informa-
tion

(c) Zipf popularity and auxiliary information

Figure 5.2: Attack accuracy with varying auxiliary information and content popularity

controlled by A. A network with cache probability9 pc is denoted as Net((C,R,P,RA), pc).

The next step is to create the content universe U. A probability (popularity) distribution is

assigned to U, denoted D(U). Consumers sample their interests from this distribution.10 We

also allow auxiliary information distribution DAA(P) to be imposed on the content universe.

This distribution is given to A.

9By cache probability we mean the probability that any node in the network employs a cache. The size
of which is bounded to 10, 000 items. This size was chosen so that caches did not suffer constant churn and
content was retained for longer than a single consumer-to-producer round trip.

10Currently, only Zipf and Uniform distributions are supported. However, it is easy to add, and experiment
with, new distributions.

134

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

0
.0

4
0

 0

 2000

 4000

 6000

 8000

10000

Statistical Distance

L
e
n
g
th

 o
f
S

im
u
la

ti
o

n
 [

s
]

M
a
tc

h
 R

a
ti
o

●●
●

●

●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●

●●●●

●

●

●

●

●

●

●

●

●

●●●●●
●

●●●●●

●

● ●●

●
●

●

●

●●

Figure 5.3: Attack accuracy as a function of ∆(DR,DA) and simulation time

Once the simulation is configured, it runs for a number of epochs. At each epoch, a random

consumer c←$ C sends an interest for content C←$ U, sampled according to DR(P). An

interest is forwarded until it: (1) results in a router cache hit, or (2) reaches the producer.

Then, a content packet is sent back to the consumer. Each A-controlled node records the

interests it sees during this process. When the simulation completes, observed results from

each A-controlled node are merged to form A’s complete view of the network. (Specifically,

frequency histograms are merged together into one.) This is then fed into the frequency

analysis attack along with true popularity distribution and auxiliary information. The output

of the attack is the match ratio and A’s accuracy, as described in Section 5.2.2

135

 0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 0

 2000

 4000

 6000

 8000

10000

Sample Size

L
e
n
g
th

 o
f
S

im
u

la
ti
o
n

 [
s
]

M
a

tc
h
 R

a
ti
o

●●●●●
●●

●

●

●

●●●●●●
●

●
●

●

●●●●●●
●

●

●

●

●●●●●●
●

●

●

●

●●●●●
●●

●

●

●

●●●●●
●●

●

●

●

●●●●●●●●

●

●

●●●●●●●
●

●

●

●●●●●●●
●

●

●●●●●●●●●

●

Figure 5.4: Attack accuracy as a function of content sample size and simulation time

5.2.4 Global Eavesdropping Adversaries

In this section we experimentally assess efficacy of the frequency analysis attack by a global

A, denoted byAG, which is assumed to have access to every interest issued by every consumer

in the network. In this model, we need to answer the following question:

Given content popularity distribution DR and AG with auxiliary information

distribution DA, to what extent can AG successfully correlate encrypted interest

and content packets with their plaintext counterparts?

136

0 10 20 30 40 50
Content Rank

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
at

ch
 R

at
io

Edge routers
All routers

Figure 5.5: Match ratio for A distributed across edge and network routers

As mentioned in Section 5.2.2, we consider total and partial success by AG, since encryption

protects every packet equally. We first assess attack accuracy with various DR and DA.

Results are shown in Figure 5.2. With the exception of simulation noise, accuracy is very

low when either distribution is uniform. However, when DA is statistically close to DR,

attack accuracy is high.

Next, to understand the extent to which statistical distance affects this attack, we conducted

the following experiment. First, we created a content universe U of size N . Then, for each

considered probability distribution, we created DR and DA for P. We considered uniform

distribution as a baseline, i.e., the case of AG having no auxiliary information, and Zipf

distribution with parameters α ∈ [0.5, 2.5]. We then ran the simulator for τ time steps.

Finally, we simulated the frequency analysis attack, measured accuracy of resultant guesses,

and computed ∆(DR,DA). Figure 5.3 shows the matching probability as a function of

∆(DR,DA), for various DR. It illustrates that, as ∆(DR,DA) increases, matching ratio

137

decreases, as expected. However, the rate of decline is low, meaning that even some statistical

equivalence is sufficient for the attack.

0 10 20 30 40 50
Content Rank

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
M

at
ch

 R
at

io
pc =1.0

pc =0.5

pc =0.0

Figure 5.6: Attack accuracy with varying network caches

Size of content universe has a non-negligible effect on attack accuracy. Intuitively, with more

options to choose from, AG’s task of building the correct mapping becomes more difficult.

To show this, we repeated the same experiment as above except with fixed DR and DA, while

varying N . Figure 5.4 shows the results. As expected, as N increases, matching ratio quickly

decreases. This is because each mapping entry becomes more sensitive as the probability

space thins.

5.2.5 Distributed Eavesdropping Adversaries

Admittedly, AG is not the most realistic adversary. In practice, adversaries will likely be

localized in small groups of possibly collocated routers. For example, A could exploit software

138

running in edge access points to observe traffic closest to consumers, or it could subvert an AS

and compromise some or all of its routers. We now consider a distributed adversary, in order

to assess the relationship between network caching, content location, and A’s topological

distribution. Each of these variables impacts the type and number of samples observed by

A, which are the main components of the attack. Intuitively, as quality of this information

degrades, so should attack accuracy.

We conducted all experiments described below over a topology based on Deutsches ForschungsNetz

(DFN) [5, 6]. It consists of 160 consumers, multiple producers attached to edge routers, and

multiple routers (more than 30).

Adversary Distributions and Caching Effects

Attack accuracy increases as a function of A’s coverage. As shown in the previous section,

accuracy can be quite high if A can observe all traffic. However, as A’s presence declines,

so does the number of samples observed. We consider two A topological configurations:

(1) distributed among some fraction of edge routers, and (2) distributed among a random

fraction of all routers. To explore the impact of A’s topological distribution, we conducted

an attack experiment on Net((C,R,P,RA), pc), where pc = 0.5 and RA is nearly 25% of

edge routers or 25% of all routers. Results in Figure 5.5 show that, in the first edge case, A

attains higher accuracy for high ranking content. This is because its knowledge of interest

frequency is more complete, due to duplicate interests not being masked by caches. In the

second case (among all routers), overall match ratio is higher than in the edge case since A

has access to more traffic in the network.

Caching also plays an important role: if enabled in every router, there should be, in theory,

less traffic traversing the network. Thus, A would observe fewer samples of encrypted

139

content11, and attack accuracy would necessarily decline. This is an interesting relationship

explored in [23]. In some scenarios, caching can be easily exploited to violate privacy of

individual consumers. However, with respect to content, caching complicates the attack.

To explore this relationship, we experimented with Net((C,R,P,RA), pc), where pc ∈ {0.0, 0.5, 1.0}.

Each router has a 0.25 probability of being compromised. Results in Figure 5.6 show that,

when caching is disabled, A is correct (for high ranking content) with greater probability

than if caching is globally enabled. This is a direct result of observing fewer samples.

0 20 40 60 80 100
Degree of Replication

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
at

ch
 R

at
io

|P|=1
|P|=2
|P|=4

Figure 5.7: Attack accuracy with producer replication

Replication Effects

Replication, i.e., serving content from multiple network locations, is another important factor

in attack efficacy. Similar to caching, replication allows interest and content packets to bypass

A and cause it to observe less traffic. To understand the extent to which replication deters

11Assuming that A is not located at the edge.

140

the frequency analysis attack, we conducted experiments on Net((C,R,P,RA), pc), where

pc = 0.5 and |P| ∈ {1, 2, 4}. A replicated producer publishes the same content under a

different prefix12 in a different part of the network. (We forced each replica to be sufficiently

disjoint topologically in order to to reduce the chance of two interests for different replicas

traversing the same path.) As shown in Figure 5.7, attack accuracy decreases as the degree of

replication increases. With more replicas, consumers are free to stripe their interests across

multiple prefixes and, by doing so, potentially bypass A.

5.2.6 Probing Popularity Inference

The frequency analysis attack requires DE(C) and DAA(P). The former is needed to approx-

imate DR(P). The latter is not always readily available by eavesdropping. Fortunately, by

exploiting properties of CCN, it can be learned. Armed with knowledge of the public names-

pace for a set of content, i.e., network names N, A (acting as a malicious consumer) can build

DAA(P) by probing the network. (Recall that, in this work, network names are encrypted,

and the adversary can not learn their contents. Thus, knowledge of the network name does

not lead to knowledge of the corresponding application name.) Specifically, A can query for

known names and, based on response time, infer whether corresponding content is cached.

This sort of inference attack is similar to the invasive cache probe attack in [197], which

works as follows: A aims to learn whether some nearby consumer asked for content named

N . To do so, it requests N and relies on timing information to learn whether this content

was served from a cache. (Response time lower than the consumer-to-producer RTT means

that requested content was served from a cache.)

The rate at which it probes the network is important since A must be able to differentiate

between cached copies that it itself injected into the network by probing, and actual cached

12For example, an Akamai replica might use the /akamai, while a Fastly replica might use the /fastly

prefix.

141

copies previously requested by nearby consumers. Let tc be the characteristic time of a cache

[79]. If LRU cache eviction policy is used, then tc is average time elapsed between the last

request for an item and its eviction. If FIFO or random cache eviction policy is used, then

tc is average time between insertion and eviction. For simplicity, we assume that all routers

use LRU. tc tells A the expected time interval before an item is evicted. In turn, this can

be used as a lower bound on probe frequency fp, i.e., fp > 1/tc.

AssumingA knows tc, the probing algorithm runs as follows. Let AppendRandomComponent(N, λ)

be a function that, given input name N , samples a random bit-string of length λ and ap-

pends it to N as the last name segment. This effectively creates a unique name for which a

cache hit is impossible (with overwhelming probability). Given name universe N , A iterates

through the set and, for each N ∈ N , issues a pair of interests (probes): Nh = N and

Nm = AppendRandomComponent(N, 128), and records time tN . It then waits to receive the

corresponding content packets, named Nh and Nm, and records their respective arrival times

thN and tmN .13 When both are received, A computes ∆N = ||(thN−tN)|−|(tmN−tN)||. If ∆N > ε

for some constant ε, A learns that an interest for Nh was satisfied faster than that for Nm,

which went all the way to the producer. Therefore, a cache hit occurred. A then sleeps

for tc before proceeding to the next name in N . This process is repeated to incrementally

build DAA(P). This procedure is shown in Algorithm 9, where r is the number of namespace

iterations to complete before producing the estimated auxiliary popularity map ρ, and tc is

a known characteristic time.

Before assessing this algorithm, we consider its runtime, which is approximately r|N |tcRTTmax,

where RTTmax is the maximum RTT for any interest probe pair. This is clearly infeasible as

N grows. Therefore, we recommend implementing a parallelized variant of this algorithm.

Specifically, instead of traversing N in sequence, A can do it in parallel and only sleep for

13Recall that Interest Returns are sent in response to interest requesting non-existing content. This
guarantees that every request receives a response, barring any packet loss.

142

Algorithm 9 Popularity inference algorithm

1: Input: N , r, tc, ε
2: Output: α : N → N
3: for N ∈ N do
4: α[N] = 0

5: for i = 1, . . . , r do
6: for N ∈ N do
7: Nh = N ; Nm = AppendRandomComponent(N, 128)
8: tN = now()
9: Send requests for Nh and Nm in parallel and record their time of arrival in thN and tmN

10: ∆N = ||(thN − tN)| − |(tmN − tN)||
11: if ∆N > ε then
12: ρ[N] = ρ[N] + 1

13: Sleep for tc
return α

tc in between each successive probe for N . Given P processing units, runtime is lowered to

rtc
|N |
P

RTTmax, since each name can be processed in parallel.

We evaluate this algorithm as follows. Using ccns3Sim [247], we created a simulation with

n consumers Cr1, . . . , Crn, one “monitor” Cr∗ (A), and a single producer with S content

objects. We chose S = 50 and S = 100 for our simulations here to illustrate the efficacy

of this attack. Each consumer is given access to all these content names. Popularity of

content in this collection followed a Zipf distribution with α = 1.5. Nodes were arranged

in a star topology with a single caching router between them. Storage size of the caching

router matched that of the content collection. Each consumer, Cri,i = 1, . . . , n, requested a

random name from the content collection every second. Meanwhile, Cr∗ executed Algorithm

9. When finished, the simulation outputs the actual frequency distribution of content (as

perceived) by the producer and the observed frequency distribution of Cr∗. Figure 5.8 shows

these two distributions. Results indicate that the attack algorithm can learn, with fairly high

accuracy (for the given values of S), the actual popularity distribution solely by exploiting

router caches. (Of course, this accuracy may decline as S increases further. We plan to

explore this degradation in future work.)

143

0 10 20 30 40 50
Content Index

0

1

2

3

4

5

6

7
Fr

e
q
u
e
n
cy

 P
e
rc

e
n
ta

g
e
 [

%
]

Observed
Actual

(a) S = 50 items

0 20 40 60 80 100
Content Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
e
q
u
e
n
cy

 P
e
rc

e
n
ta

g
e
 [

%
]

Observed
Actual

(b) S = 100 items

Figure 5.8: EDF inference algorithm accuracy

The popularity inference attack works if the namespace is static and enumerable. However,

it no longer applies if the namespace is dynamic or otherwise unpredictable.

Estimating Characteristic Time

Probing frequency fp must be large enough such that all router caches on the A-to-producer

path evict stale content between sequential probes for the same content. Therefore, A needs

to know maximum tc∗ for all on-path routers. Assuming interests for N issued by other

consumers follow a Poisson Arrival process with rate λN , probability that a probe for N

results in a cache hit (for any cache) can be characterized as in [101]:

hN = 1− e−λN tc∗

For a given Ri on the A-to-producer path, tic is a constant that satisfies:

∑
N∈N

(1− e−λN tic) = C,

144

where C is capacity of the LRU cache. To approximate tc∗, A must therefore know: (a)

capacity of each on-path router and (b) namespace from which content can be requested.

Though possible, it is highly unlikely that A would learn all this information. Therefore, it

must be approximated. One trivial way to do this is to assume a large C and modest λN

to represent each cache and all names. This would not yield a value close to tc∗. However,

since the inference algorithm does not require precision in the characteristic time, we deem

this acceptable.

5.2.7 Attack Ramifications

We now discuss the efficacy of the privacy attack and importance of caching and namespace

enumeration in mitigating this attack.

Attack Efficacy

Success of the attack relies on three key pieces of information: DAA(P), DR(P), and DE(C).

If DAA(P) is perfect, i.e., ∆(DAA(P),DR(P)) ≈ 0.0, the attack’s success depends on accuracy

of empirically observed popularity distribution. This is because A uses its knowledge of

observed popularity to map items in P to C. Put another way, the attack is most successful

when the following conditions hold:

∆(DAA(P),DR(P)) ≈ 0.0

∆(DE(C),DAA(P)) ≈ 0.0

As shown earlier, A’s topological placement, network caching, and distribution of content

across the network all play a role in widening the gap between these distributions. Any

countermeasure requires forcefully widening the gap between any of these distributions. If A

145

is localized within a part of the network, then distributing content across multiple locations

can help bypass it. However, if A is topologically wide-spread, enabling caching limits the

number of events observed, thus making attacks more difficult.

Caching and Privacy

Based on our discussion thus far, it is evident that caching can both help and hurt privacy.

Lauinger et al. [197] and Acs et al. [23] showed that a cache can be exploited as an oracle

to allow A to learn when popular content is requested by nearby consumers. This attack

uses a timing side-channel based on router caches. It works by requesting popular content

from the network via interest “probes” and trying to discern if they have been served from

a nearby cache. Similarly, probing attacks that target content producers can be used to

discover whether certain content was recently served. One mitigation strategy is to remove

the timing channel by requiring caches to artificially delay responding to interests that are

marked as “private”.

In this section, we showed that caching can help privacy by hindering A’s ability to conduct

frequency analysis attacks. These attacks do not directly rely on the timing side-channel.

Instead, they rely on the content popularity side-channel. The only step that relies on timing

is when A estimates content popularity distributions. Without caches, interest frequency is

not dampened before reaching A. Therefore, caching is encouraged. Moreover, the timing

side-channel mitigation from [23] does not make this attack any easier; it only increases

latency for consumers.

An alternate attack mitigation strategy is to protect interest and content packets with seman-

tically secure encryption, as described by Ghali et al. [146] and in Section 5.1. This would

obviate any on-path caching and make each interest-content pair unique. Thus, impact on

the network, especially in terms of congestion, would likely be substantial.

146

Namespace Enumeration

If DAA(P) is unknown, feasibility of the frequency analysis attack relies on A’s ability to enu-

merate the content namespace. This is possible if: A (a) knows all content names a priori,

(b) can discover or learn them through external means, (c) can derive them by some names-

pace convention, e.g., if namespace structure is well-defined, or (d) can learn them from some

search engine. Regardless of the method, public content is always enumerable. (If it were not,

no one would be able to access it.) Therefore, restricting or controlling enumeration is only

possible for restricted content, for which privacy is probably the more important. Thus, if

there are access control mechanisms that require consumer authentication before requesting

content, enumeration would be restricted to only authorized consumers. This might suffice

for some applications. However, consider a CCN-based media distribution service similar to

Netflix. Every authorized consumer has access to (essentially) the same content and discov-

ery mechanisms. Since access is pervasive across the entire content collection, enumeration

is not preventable. (Every client in the Netflix case can search for and discover the same

protected content.)

Note that shortening the lifetime of a name-to-content binding does not help prevent enumer-

ation. CCN requires every content object to have at least one name. Therefore, a producer

could update the name-to-data bindings at regular intervals. However, if A can discover this

binding in a given time epoch, it can also almost surely do the same for the next epoch.

What matters for the attack considered in this work is how many times a specific content is

requested, and not how many times a specific name is requested.

147

5.3 AC3N: Efficient Anonymous Communication

ANDāNA (Anonymous Named-Data Networking Application) [105] was the first attempt

to support anonymous communication in NDN and CCN. Inspired by Tor [300, 13], it uses

onion-like concentric encryption to wrap interests for content that are successively decrypted

and forwarded by participating anonymizing routers (ARs). Along the return path towards

the consumer, content is wrapped in layers of encryption at each AR. Unlike Tor, which is

a mature tool with well over a decade of deployment experience, ANDāNA was a proof-of-

concept prototype application for NDN (and CCN). Its main purpose was to demonstrate

the feasibility of anonymous content retrieval over NDN. Supporting high-throughput, low-

latency, unidirectional, and bidirectional traffic for voice, video, and media streaming appli-

cations was not ANDāNA’s goal.

Motivated by these shortcomings, we present an improved design for anonymous communi-

cation in CCN. Our approach, henceforth referred to as AC3N (Anonymous Communication

for Content-Centric Networking), addresses many performance and anonymity pitfalls of

ANDāNA. The design of AC3N relies only on the underlying network’s ability to pull uniquely

named content by name (via interests) and does not depend on any other design features,

e.g., in-network caching. This makes AC3N viable for similar ICN architectures.

The remainder of this section is outlined as follows. Section 5.3.1 describes the adversarial

model against which AC3N is designed. Section 5.3.2 presents the design of AC3N and

Section 5.3.3 reports on its implementation as an application over CCN. We test AC3N in

numerous environments with various types of uni- and bi-directional traffic. To illustrate

its effectiveness, we compare these performance results to ANDāNA. Results indicate that

our design yields noticeable performance gains without sacrificing consumer or producer

anonymity. Finally, Section 5.3.4 asserts the anonymity claims of AC3N. We conclude with

a discussion of related work specific to anonymity networks and CCN.

148

5.3.1 Anonymity Overview and Threat Model

Anonymity is influenced by many features of CCN. For example, interest and content names

may reveal information about the producer and, potentially, the consumer. Anonymity may

also be compromised by the contents of router caches and content object digital signatures.

In order to fully understand the extent of these anonymity shortcomings, we adopt the

ANDāNA adversarial model and use it in the design and development of AC3N. In this

model, we assume an adversary who is capable of performing the following actions14:

• Deploy compromised routers,

• Compromise existing routers,

• Control content producers,

• Deploy compromised caches, and

• Observe and replay traffic

To keep this model realistic, we assume that the time to mount any one of these attacks is

non-negligibly longer than the average RTT for an interest-content exchange. Formally, we

define an adversary A as a 3-tuple: (PA,CA,RA) where the components denote the set of

compromised producers, consumers, and routers, respectively. See Table 5.4 for a complete

list of notation used in this work. Following [105], ifA controls a producer or a consumer then

it is assumed to have complete and adaptive control over how they behave in an application

session. In other words, A can control all of the timing, format, and actual information of

each content through comprised nodes and links.

We define a configuration as a snapshot in time of the current activity associated with a

consumer. In other words, each configuration is a relation that maps consumers to the state

of a subset of the network. Let Cr,R1, . . . , Rn, P be a consumer-to-producer path of length

14Any one of these actions can be performed adaptively, i.e., in response to status updates or based on
observations.

149

(n+ 1) from Cr ∈ C to P ∈ P. Furthermore, let int
n

1 be an interest sent from Cr to P that

traverses the route R1, . . . , Rn. A configuration CF is then defined as:

CF : C→ {(R1, . . . , Rn, P, int
n

1)}.

This relation can be viewed as a map from C ∈ C to a set of routers defining a path, or

circuit, from C to all P ∈ P that interests int
n

1 traverse.

As in [105], we define anonymity in the context of indistinguishable consumer configurations.

Specifically, two configurations CF and CF′ are said to be indistinguishable with respect to A,

denoted CF ≡A CF′, if, for all such polynomial-time adversaries A there exists a negligible

function ε such that:

|Pr[A(1κ,CF) = 1]− Pr[A(1κ,CF′) = 1]| ≤ ε(κ),

for global security parameter κ. This means the probability that, given two configurations,

the likelihood thatA can correctly differentiate one from the other is no better than a random

guess. If A was able distinguish between two separate configurations, A would then also be

able to determine, at a minimum, that either (a) some interest was sent by two different

consumers, or (b) two different interests emanated from the same consumer. Since this is

the minimum amount of information that can be revealed to A, we use this as our basis

for defining consumer, producer, and session anonymity, as well as producer and consumer

linkability and interest linkability.

Definition 5.6. [105] For Cr ∈ (C \ CA), Cr has consumer anonymity in CF with respect to

A if ∃ CF′ ≡A CF; such that CF′(Cr′) = CF(Cr) and Cr′ 6= Cr.

Definition 5.7. [105] Given int
n

1 and P ∈ P, Cr ∈ C has producer anonymity in CF with

respect to P and A if ∃ CF′ ≡A CFsuch that int
n

1 is sent by a non-compromised consumer to

P ′ 6= P .

150

Definition 5.8. Two entities P and C serving as producer and consumer in an application

session are said to have session anonymity in CF with respect to A if both C and P have

producer and consumer anonymity in CF with respect to A.

There are two types of linkability that are important in this work: producer and consumer

linkability, and interest linkability. Both of these are defined with respect to consumers,

producers, interests, and content objects. Informally, two or more of these “entities” are

unlinkable with respect to A if A cannot determine if they are related in any meaningful way.

As an example, such a meaningful relation might be that content object C(N) corresponds

to the interest I(N).

Since packet (message) arrivals are discrete events observed at consumers, routers, and pro-

ducers, we refer to distinct messages based on the order in which they arrive. Specifically, let

int:ie be the i-th interest received or processed by entity e in the network, e.g., a consumer,

router, or producer. With this notation in place, we formally define interest unlinkability

below. Content object unlinkability has an analogous definition.

Definition 5.9. Two interests int:ie and int:je that arrive at entity e are unlinkable with

respect to A in configuration CF if

|Pr[A(1κ,CF, int:ie) = 1]− Pr[A(1κ,CF, int:je) = 1]| ≤ ε(κ).

Producers and consumers may also be linkable with respect to a particular configuration CF

and A. Intuitively, this means that interests issued by a consumer and those received by a

producer can be paired. We formally define the inverse of this idea below.

Definition 5.10. A producer P ∈ P and consumer Cr ∈ C \ CA are unlinkable in CF with

respect to A if there exists CF′ ≡A CF where interests generated from Cr are sent to a

producer P ′ 6= P .

151

It may be easier to consider the notion of linkability instead. Specifically, a producer P ∈ P

and consumer Cr ∈ C \ CA are linkable if in CF with respect to A if all interests sent from

Cr are sent to P .

Linkability and anonymity are closely related. Consider the following corollaries, which are

proved in [105].

Corrolary 5.3. [105] Producer P ∈ P and consumer Cr ∈ C \CA are unlinkable in configu-

ration CF with respect to A if P has producer anonymity with respect to Cr’s interests or Cr

has consumer anonymity and ∃ CF′ ≡A CF where CF′(Cr′) = CF(Cr) = Cr with Cr′ 6= Cr

and Cr′’s interests are routed to a producer P ′ 6= P .

Corrolary 5.4. [105] Producer P ∈ P and consumer Cr ∈ C \ CA are unlinkable in con-

figuration CF with respect to A if both P and Cr have producer and consumer anonymity,

respectively.

Our primary goal is to achieve consumer and producer anonymity and unlinkability with

minimal overhead. We describe key design elements and show that AC3N achieves this goal

in Section 5.3.2. For brevity, we analyze claims of anonymity and unlinkability in Section

5.3.4.

ANDāNA Highlights

To motivate AC3N, we first re-examine ANDāNA. In ANDāNA, circuit ARs are chosen by

consumers. Before interests are issued by a consumer, names are first wrapped in concentric

layers of encryption. Each “layer” contains a routable name prefix for the next hop (AR) in

the circuit and the underlying encrypted layers. Each AR decrypts their layer of the name

to obtain the next routable prefix in the circuit and corresponding layer, i.e., it “unwraps”

its layer of encryption, and then forwards the interest with the new name accordingly. Upon

152

Consumer

Interest Interest Interest

Content ContentContent

AR1 AR2 ??

Multiple Encryptions Decrypt Outer Layer
and Forward

Decrypt Outer Layer
and Forward

Multiple Decryptions Encrypt and Return Encrypt and Return

Figure 5.9: ANDāNA concentric encryption and decryption

the receipt of content objects in the reverse path, each AR will encrypt the entire content

object and forward the “wrapped” result to the next downstream hop. The consumer then

recovers the content object by iteratively decrypting each layer of encryption surrounding

the content object. This linear wrapping and unwrapping behavior is illustrated in Figure

5.9. The right-most entity is labeled with “??” because the plaintext interest may traverse

through more than a single hop before reaching the final producer.

Unlike Tor, ANDāNA does not support persistent anonymous circuits between consumers and

producers. Rather, ephemeral (one-time) circuits are created as the interest is sequentially

decrypted and forwarded. State information in each AR is only maintained in the symmetric

(session-based) variant ANDāNA.

In the symmetric variant of ANDāNA, state information, consisting of a unique session identi-

fier and symmetric key used for interest and content decryption and encryption, respectively,

is established in each anonymizing router using a standard key exchange (handshake) proto-

153

col. The use of symmetric encryption removes the computational burden of public key en-

cryption. However, ANDāNA requires that the session identifier be sent in the clear for every

interest, which allows A to link interests and content packets, thus enabling deanonymization

attacks against consumers (see below for details). Furthermore, the handshake procedure

wastes consumer bandwidth and time, especially in the case of short-term communication.

Identified Issues

The primary motivation for AC3N is to attain the same anonymity guarantees as the public

key variant of ANDāNA with better versatility and performance. Although ANDāNA includes

a symmetric (session-based) variant as a more efficient alternative, it does not provide un-

linkability. Generally, unlinkability is a sufficient, rather than a necessary, condition for

anonymity. However, in ANDāNA interest-content correlation can lead to consumer and

producer linkability, which can immediately violate anonymity.

For example, suppose that A eavesdrops on incoming and outgoing interests for a particular

AR. By analyzing traffic patterns, A can link incoming and outgoing session IDs. In fact,

a variant of this adversary was studied in the context of Tor by Murdoch and Danezis in

[232] and was shown to be quite successful. We believe that the same attack could be

augmented for ANDāNA. In particular, repeating this attack at each AR in a circuit can

result in deanonymization of both the consumer and producer.

The use of application and environment contextual information has been investigated by

Franz et al. [127], where side-channel and environment information (e.g., deterministic

behavior of an AR always forwarding a packet after unwrapping an interest received from a

downstream neighbor) is used to quantify the degree of unlinkability. Furthermore, regardless

of how linkability information is acquired, it has been shown that it can degrade consumer

and producer anonymity beyond that attainable by general traffic analysis [276].

154

Since most relevant literature focuses on mix-based anonymizing services akin to Tor, upon

which ANDāNA was designed, it is clear that all linkability problems studied in the context

of Tor are also applicable to symmetric variant of ANDāNA. This is why one of the key goals

of AC3N is to attain the same anonymity guarantees as the public key variant of ANDāNA,

which has no linkability issues, while still providing more efficient support for low-latency,

high-throughput and bidirectional traffic, as compared to the symmetric variant of ANDāNA.

5.3.2 System Design

This section describes the design of AC3N. All relevant notation is presented in Table 5.4.

Table 5.4: Relevant AC3N notation.

Notation Description
C Set of all consumers
P Set of all producers
R Set of all routers
κ Global security parameter

Cr, P Consumer and producer, respectively

Ri ∈ R The i-th anonymizing router (AR) in an AC3N circuit

Circi A set of session information corresponding to the i-th circuit at an AC3N consumer

int
j

i Encrypted interest wrapped from Ri to Rj (i ≤ j)
(pki, ski) Public and private key pair of router Ri
Epki(·) Public key encryption using pki
Dpki(·) Public key decryption using pki

Encryptki(·) XOR-based symmetric key encryption using key ki
Decryptki(·) XOR-based symmetric key decryption using key ki

STi AR Ri session table used to store session ID and digest tuples
Eki Interest and content encryption key for AR Ri
Mki Shared MAC key for AR Ri and Ri+1

EncryptionIVi Encryption initialization vector used for Ri
SessionIVji j-th value of the dynamic session initialization vector for Ri

Sessioni Session ID for ri
SessionIndexji j-th dynamic session index (identifier) shared between the consumer and AR Ri

H(·) Collision-resistant hash function with domain {0, 1}∗ and range {0, 1}κ

155

Circuit and Session Establishment

Similar to Tor [300], anonymizing routers (ARs) and circuits are at the core of AC3N. As

previously mentioned, a circuit is a sequence of ARs through which upstream interests and

downstream content objects flow. Circuits are established for long-term sessions, i.e., they

are not ephemeral. ARs in a circuit serve two purposes: (1) decrypt and forward encrypted

interests, and (2) encapsulate (encrypt) content objects using previously acquired or agreed

upon keys and forward them downstream.

Consumers generate interests wrapped in several layers of encryption and receive content

objects also wrapped in several layers of encryption that it can decrypt. Each AR is an

application running on router, and therefore technically serves as the producer for each

downstream AR in the circuit. Unlike standard CCN content that carries a digital signature,

AC3N uses MACs for more efficient authenticity checks.

To increase interest and content throughput, circuit sessions are established and initialized

with long-term symmetric keys used for both content encryption and MAC generation and

verification. The complete set of session state information, which is established for n ARs

R1, . . . , Rn in a circuit, is as follows:

• Session IDs, Sessioni, and session initialization vectors (IVs), SessionIV0
i ,

• Content encryption keys, Eki , and initial counter values, EncryptionIVi, and

• Pairwise MAC keys Mki between adjacent ARs and the consumer (used to tag and

verify content).

Algorithm 10 describes the circuit establishment procedure in more detail. Consumers ex-

ecute the EstablishCircuit function, which invokes the Init function to establish state with

AR Ri, i = 1, . . . , n. The ARs accept session establishment via the InitHandler functions,

which store session information in local memory and respond with an appropriate acknowl-

156

edgment. Note that no two routers will share the same session identifier (with non-negligible

probability) even though they are part of the same circuit, since consumers generate session

identifiers independently and uniformly at random from {0, 1}κ.

After a circuit and its session information have been established, all subsequent traffic is

protected via a CCA-secure symmetric scheme [180]. The encryption and MAC key for

router Ri are indexed via SessionIndexji , the dynamic session index (identifier) sent in the clear

along with the encrypted interest. To provide unlinkability, the session index is “rotated”

from SessionIndexji to SessionIndexj+1
i , after each new interest is received and forwarded,

using a one-way and strongly collision-resistant hash function H(·). Specifically, the transfer

functions are:

SessionIndexj+1
i = H(SessionIVj

i + Sessioni)

SessionIVj+1
i = 1 + SessionIVj

i mod (2κ).

Note that SessionIVj
i is kept private.

AC3N sessions are unidirectional. Thus, bidirectional traffic requires two sessions. This

allows each party to choose its own set of ARs. Besides promoting better privacy, this can

improve QoS by distributing computational load among multiple, and possibly distinct, ARs.

State initialization in AC3N is separate from circuit usage, i.e., it uses a handshake routine

to initialize state. However, our design does not preclude on-line state establishment. For

example, the first wrapped interest issued by a consumer for a new circuit could be overloaded

to include all of the state establishment information in addition to the associated interest

information.

157

Algorithm 10 Circuit session establishment

Require: Anonymous routers R1, . . . , Rn (n ≥ 1) with public keys pk1, pk2, . . . , pkn.

1: function InitHandler(int)
2: (Eki ,Mki ,Mki+1

,EncryptionIVi, SessionIV1
i , Sessioni) := Dski(int)

3: SessionIndex1
i := H(Sessioni + SessionIV1

i)
4: Store (Sessioni, Eki ,Mki ,Mki+1

,EncryptionIVi, SessionIVi)
5: Insert (SessionIndex1

i , Sessioni, SessionIV1
i) into the session table STi

6: resp← EncryptEki
(SessionIndex1

i)
7: return resp

8: function Init(ri, Mki+1
)

9: Eki ← {0, 1}κ,Mki ← {0, 1}κ
10: EncryptionIVi ← {0, 1}κ, SessionIV1

i ← {0, 1}κ
11: xi ← {0, 1}κ, Sessioni := H(xi)
12: SessionIndex1

i := H(Sessioni + SessionIV1
i)

13: Payload := Epki(Eki ,Mki ,Mki+1
,EncryptionIVi, SessionIVi, Sessioni)

14: int := namespacei/CREATESESSION/Payload
15: resp := GetContent(int)
16: (AckSessionIndex1

i) := DecryptEki
(resp)

17: if SessionIndex1
i = AckSessionIndex1

i then
18: return (Sessioni, Eki ,Mki , xi,EncryptionIV1

i , SessionIV1
i)

19: else
20: return Error

21: function EstablishCircuit(j, R1, . . . , Rn)
22: (Sessionn, Ekn ,Mkn ,EncryptionIV1

n, SessionIV1
n) := Init(rn)

23: Circj = {}
24: Circj[n] = [(Sessionn, Ekn ,Mkn ,EncryptionIV1

n, SessionIV1
n)]

25: for i = n− 1 downto 1 do
26: if i = n− 1 then
27: (Sessioni, Eki ,Mki ,EncryptionIV1

i , SessionIV1
i) := Init(Ri,⊥)

28: else
29: (Sessioni, Eki ,Mki ,EncryptionIV1

i , SessionIV1
i) := Init(Ri,Mki+1

)

30: Circj[i] = (Sessioni, Eki ,Mki ,EncryptionIV1
i , SessionIV1

i)

AC3N Circuit Usage

Generally, AC3N circuits are used the same way as in ANDāNA. The encrypted interest

generation procedure is shown in Algorithm 11. In it, a consumer wraps an interest for a

sequence of ARs and forwards it towards the first AR.

158

Note that each encrypted interest also includes a timestamp to mitigate replay attacks. The

interest and content forwarding procedures are shown in Algorithms 12 and 13, respectively.

Superscripts for session IVs and indexes are omitted for presentation clarity.

Content encryption atRi uses a stream cipher whose key stream is initialized by EncryptionIVi.

As presented in the content forwarding routine, EncryptionIVi is advanced similarly to the

SessionIVi so that the key stream is a fresh pseudorandom bit string for each content object.

One additional benefit of this form of encryption is that it permits the key stream to be

precomputed offline. It does, however, introduce the probability of improperly computed

key streams, which will result in corrupt ciphertext. Section 5.3.4 discusses this issue in

more detail.

After issuing an interest using the encrypted interest generation procedure, an encrypted

content object and MAC tag tuple datani = (datani , σ1) is returned. The consumer then

verifies the MAC tag σ1 and then decrypts datani . The commutative property of XOR allows

the consumer to decrypt each layer of the content in any arbitrary order.

Algorithm 11 Interest onion encryption

Require: Interest int, R1, . . . , Rn circuit length n
Ensure: Encrypted interest int

n

1

1: int = int
2: for i = n downto 1 do
3: {Sessioni, Eki ,Mki ,EncryptionIVk

i , SessionIVk
i } := Circj[i]

4: SessionIndexki := H(Sessioni + SessionIVk
i)

5: SessionIVk+1
i = SessionIVk

i + 1 (mod 2κ)
6: int

n

i = Ri/SessionIndexki /EncryptEki
(int, timestamp)

7: return int
n

1

5.3.3 Performance Assessment

In this section we assess the performance of AC3N against ANDāNA. ANDāNA was originally

implemented in C using the CCNx 0.8x library [10]. To bring the evaluation up to speed

159

Algorithm 12 Interest decryption and forwarding

Require: int
n

i := Ri/SessionIndexki /EncryptEki
(int, timestamp)

Ensure: (int
n

i+1, Sessioni) or discarded packet

1: if SessionIndexki ∈ STi then
2: (Sessioni, Eki ,Mki ,EncryptionIVi, SessionIVj

i) := Lookup(STi, SessionIndexi)
3: SessionIVk+1

i := SessionIVk
i + 1 (mod 2κ)

4: SessionIndexk+1
i := H(Sessioni + SessionIVk+1

i)
5: Update (SessionIndexk+1

i , Sessioni, SessionIVk+1
i) in STi

6: (int
n

i+1, timestamp) := DecryptEki
(int

n

i)
7: if decryption fails or timestamp is not stale then

8: Discard int
j

i

9: else
10: Persist tuple Ti = (int

n

i , int
n

i+1, Sessioni) to pending interest table PTi

11: return (int
n

i+1, Sessioni)

12: else
13: Discard int

n

i

with existing technology, both ANDāNA and AC3N were implemented using the CCNx 1.0

library from PARC. All experiments were conducted on VMs running Ubuntu 14.04 LTS.

Each host was equipped with an Intel(R) Core(TM) i5-3427U CPU at 1.80GHz with 8GB

of main memory. Also, we use the public key variant of ANDāNA, since it provides the same

anonymity guarantees as AC3N.

Note that we do not include Tor in our performance comparison. We argue that such

a comparison would be ineffective and misleading. Tor is designed to run over TCP/IP

network architectures, whereas AC3N is designed for CCN architectures. Current CCN

implementations run as overlays upon TCP/IP. Thus, there is an unavoidable amount of

overhead incurred by running AC3N. Put another way, TCP/IP and the CCN architectures

differ fundamentally in that there is virtually no transport and network layer in the latter.

Thus, AC3N performance results would need to take this overhead into consideration when

compared against Tor over TCP/IP.

160

Algorithm 13 Content encryption and forwarding

Require: Content datani+1 in response to interest int
n

i+1

Ensure: Encrypted data packet datani
1: Recover tuple Ti = (int

n

i , int
n

i+1, Sessioni) based on datani+1

2: Parse datani+1 as a tuple (datani+1, σi+1)
3: if σi+1 =⊥ and Mki+1

=⊥ then

4: Verify the signature of int
n

i+1.
5: if The signature passed verification then
6: Pass
7: else
8: return Error
9: else if σi+1 6=⊥ and Mki+1

6=⊥ then

10: if σi+1 = VerifyMki+1
(dataji+1) then

11: Pass
12: else
13: return Error
14: else
15: return Error
16: Remove signature or MAC tag and name from datani+1

17: Create new empty data packet datani
18: Set name for datani as the name for int

n

i

19: datani := EncryptEki
(EncryptionIVk

i , data
n
i+1)

20: EncryptionIVk+1
i := EncryptionIVk

i + 1 (mod 2κ)
21: σi := MAC(datani)
22: datani = (datani , σi)
23: return datani

Unidirectional Assessment

Perhaps the most standard use case for both ANDāNA and AC3N is as a unidirectional

anonymizing circuit. Thus, it is important to assess the performance of both tools for this

particular use case. In this work, we consider the most important metrics for performance

to be (a) interest-content latency L and (b) and throughput S. To assess these metrics,

we consider the following simple experiment. Let Circ = R1, . . . , Rn be a circuit of length

n− 1 with n AR nodes. A client Cr is connected to R1, and Cr wishes to retrieve content

from producer P connected to Rn. Thus, the complete path is Cr,R1, . . . , Rn, P . To obtain

content, Cr issues a random interest that can be satisfied by P through Circ. Such an interest

161

1 2 3 4 5 6 7
Circuit Length

0.0

0.1

0.2

0.3

0.4

RT
T

(s
)

ANDaNA
AC3N

Figure 5.10: Unidirectional AC3N RTT measurements

is issued once every t seconds and the RTT is recorded. To compute the average latency,

the average of all observed RTTs is computed. To compute the maximum throughput, the

total number of content bytes received is divided by the total time to send a large amount of

back-to-back interests without delay. The RTT and throughput measurements as a function

of the circuit length are shown in Figures 5.10 and 5.11, respectively.

Bidirectional Comparison

In order to justify AC3N as a viable choice for anonymous communication suitable for low-

latency, bidirectional traffic over CCN, we first establish a baseline of performance measure-

ments. Since ANDāNA targeted circuits of length 2,i.e., two AR hopes, we consider circuits

of the same length. To set a baseline of performance measurements, we instantiated two

entities Cr1 and Cr2 (both acting as a producer and consumer) that interact by requesting

moderate-size content in short, frequent intervals. In order ensure that such content is never

satisfied by the cache of any intervening AR, which is a reasonable assumption for real-time

162

1 2 3 4 5 6 7
Circuit Length

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (K

B/
s)

ANDaNA
AC3N

Figure 5.11: Unidirectional AC3N throughput measurements

voice and video applications that always want fresh content, instead of stale cached content,

each content is requested from an anonymized namespace and indexed by a sequence number.

For example, to request the latest content from Cr2, Cr1 issues an (encrypted) interest for

/Cr2/S, where S is the sequence number, incremented as soon as the interest is issued. This

ensures that such interests are never satisfied by any router-cached content for the duration

of the session.

With this experimental setup, we tested AC3N under the following scenarios:

1. Cr1 and Cr2 connected point-to-point (i.e., no intermediate hops).

2. Cr1 and Cr2 connected via two “insecure” ARs that perform no interest or content

encryption (i.e., each AR just serves as an application-level proxy to forward interests

and content along through the circuit).

3. Cr1 and Cr2 connected via two “secure” ARs that perform interest and content en-

cryption.

163

Table 5.5: ANDāNA baseline bidirectional performance metrics.

Test Scenario L1 (s) σ1 (s) L2 (s) σ2 (s)
1 0.00735 0.00798 0.00340 0.00053
2 0.01321 0.00257 0.01359 0.00567
3 0.03905 0.13791 0.04248 0.13923

Table 5.6: AC3N bidirectional performance metrics.

Test Scenario L1 (s) σ1 (s) L2 (s) σ2 (s)
1 0.00517 0.00813 0.00541 0.00049
2 0.01176 0.00371 0.01521 0.00611
3 0.07805 0.12865 0.05321 0.11691

Table 5.5 shows performance results from scenarios 1, 2, and 3 for ANDāNA. We characterize

performance with respect to the user-perceived values of these latency L. We denote Li as

the perceived (RTT) latency of party Cri ∈ {1, 2}. We also assess the standard deviation for

each of these measurements. All experiments were performed using the following procedure:

• Each party generates 1, 000 sequential messages, at a rate chosen uniformly from the

range [1, 100]s.

• Each party responds to all interests with a random content object of 150B.

According to our preliminary experimental evaluation, with results shown in Table 5.6, low-

latency, bidirectional communication is feasible using ANDāNA.

5.3.4 Security and Correctness Analysis

To assess the anonymity claims of AC3N we start by adopting the adversarial model of

ANDāNA [105] and previous described in Section 5.3.1. The fundamental differences between

ANDāNA and AC3N are that, in the latter, (1) each pair of adjacent routers share a distinct

MAC key used for efficient content authenticity checks and (2) sessions are identified by the

output of H(·), rather than encrypting and decrypting interests using expensive asymmetric

procedures. Accordingly, proofs of anonymity need to be augmented to take this into account.

164

The remainder of the design is syntactically equivalent to that of ANDāNA. Thus, we simply

re-state relevant theorems without proof. In doing so, however, we generalize them to circuits

of length n ≥ 2.

Theorem 5.7. [105] Consumer c ∈ (C \ CA) has consumer anonymity in configuration CF

with respect to adversary A if there exists c 6= c′ such that any of the following conditions

hold:

1. c, c′ are in the same anonymity set with respect to the adversary A (see [105]).

2. There exist ARs ri and r′i such that ri, r
′
i /∈ RA, both ri and r′i are on the circuit

traversed by int
n

1 .

Theorem 5.8. [105] Consumer c has producer anonymity in configuration CF with respect

to producer p ∈ P and adversary A if there exists a pair of ARs ri and r′i such that ri and r′i

(for some uncompromised entity c /∈ CA) are on the path traversed by int
n

1 , p 6= p′, and all

routers r1, . . . , rn are equal in CF(c) and CF(c′).

Unlike the ANDāNA session-based design, AC3N does not suffer from interest linkability.

This result is captured in the following theorem.

Theorem 5.9. Independent interests corresponding to the same circuit session are not link-

able.

Proof. Let int:i and int:(i + 1) be two subsequent interests issued by a consumer using the

same circuit and received at router rj. By Algorithm 11, after int : i is issued, SessionIndexi+1
j becomes

H(Sessionij+(SessionIVi
j+1)) and SessionIVi+1

j becomes SessionIVi
j+1(mod 2κ). Thus, the ses-

sion index included in int:(i+1) is SessionIndexi+1
j . By the properties of H, SessionIndexi+1

j is

indistinguishable from SessionIndexij since the inputs are different. Therefore, without knowl-

edge of SessionIVi
j, an adversary cannot link int:i and int:(i + 1) to the same session. This

165

property thus holds recursively for any two interests int:i and int:(i+ k), (k > 2). Therefore

any two independent interests corresponding to the same circuit session are unlinkable.

In addition to anonymity properties, we are also concerned with the correct operation of each

AR supporting a session between two parties. In this context, we define session correctness

as the ability of a consumer to correctly decrypt content that is generated in response to

its original interest. That is, if a consumer issues an interest, it should be able to correctly

decrypt the content that it receives. The following factors impact the correctness of the

session:

1. Each AR r1, . . . , rn on the consumer-to-producer circuit should correctly recover the

session identifier associated with the current session.

2. The session key streams should only be advanced upon the receipt of an interest corre-

sponding to the consumer who initiated the session or content that is generated from

the upstream router (potentially the producer) in the circuit.

The first item is necessary in order for each AR to correctly decrypt interests, encrypt

content, and perform content signature generation and verification. The second item is

necessary so that all content can be correctly decrypted by the consumer. We claim that,

given a CCA-secure public key encryption scheme, the probability that either one of these

factors being violated by an adversary A is negligible. Let ForgeSession and KeyJump denote

the events corresponding to instances where an adversary creates a ciphertext that maps

to a valid session identifier for some session currently supported by an AR, i.e., the forged

session belongs to the routers session table ST, and the event that an adversary causes

the key stream for some AR in a consumer-to-producer circuit to fall out of sync with the

consumer.

By the design of AC3N, it should be clear that KeyJump occurs when ForgeSession occurs,

since the key stream is only advanced upon receipt of an interest, but may also occur when an

166

adversary successfully forges a MAC tag corresponding to the signature of a piece of content

from the upstream router (or producer). We denote this latter event as ContentMacForge.

With the motivation in place, we now formally analyze the probabilities of these events

occurring below. For notational convenience, we assume that each event only occurs as a

result of some adversarial action, so we omit this relation in what follows.

Lemma 5.1. For all PPT adversaries A, there exists some negligible function negl such that

Pr[ForgeSession] ≤ negl(κ).

Proof. By the design of AC3N, we know that session identifiers are computed as the out-

put of a collision resistant hash function H : {0, 1}∗ → {0, 1}m, where m = poly(κ) (i.e.,

polynomial in the global security parameter). Consequently, forging a session identifier with-

out the input to H implies that a collision was found, thus violating collision resistance of

H. Thus, forging a session is equally hard as finding a collision in H, or more formally,

Pr[Collision(H) = 1] = Pr[ForgeSession]. By the properties of collision resistance of H which

states that Pr[Collision(H) = 1] ≤ negl(κ) for some negligible function negl, it follows that

Pr[ForgeSession] ≤ negl(κ).

Lemma 5.2. For all PPT adversaries A, there exists some negligible function negl such that

Pr[ContentMacForge] ≤ negl(κ).

Proof. By the design of AC3N , the MAC scheme used for content symmetric content sig-

nature generation and verification is defined as the algorithms (Gen,Mac,Verify), where Gen

generates the secret key k used in the scheme, Mack(m) outputs the MAC tag t := Fk(m)

for some PRF F , and Verifyk(m, t) outputs 1 if t = Mack(m) and 0 otherwise. This is

known and proven to be a secure MAC scheme, meaning that for all PPT adversaries

167

A there exists a negligible function negl such that Pr[MacForgeA,Π(1κ) = 1] ≤ negl(κ),

and since ContentMacForge occurs exactly when the even MacForge occurs, we have that

Pr[ContentMacForge] ≤ negl(κ).

Lemma 5.3. For all PPT adversaries A, there exists some negligible function negl such

that:

Pr[KeyJump] ≤ negl(κ).

Proof. By the design of AC3N , it follows that Pr[KeyJump] = Pr[ForgeSession]+Pr[ContentMacForge],

and since the sum of two negligible functions is also negligible, it follows that there exists

some negligible function negl such that Pr[KeyJump] ≤ negl(κ).

Theorem 5.10. Session correctness of AC3N is only violated with negligible probability.

Proof. This follows immediately from Lemmas 1, 2, and 3 and the fact that the sum of two

negligible functions is also negligible.15

5.4 CCVPN: Namespace Tunnels

Neither ANDāNA nor AC3N were designed for the simple VPN use-case of protecting traffic

contents without hiding identities of communicating parties. Anonymizing circuits, as used

in ANDāNA and AC3N, are unnecessary when the goal is communication privacy instead

of complete anonymity. Furthermore, similar to Tor, ANDāNA is an application-layer tool,

which means that it is not suitable for high-volume low-latency communication. In contrast,

a single network-layer VPN tunnel can serve many consumers within a trusted domain.

15This sum comes from the fact that probability of “failure” events must be taken into account in both
directions of the session.

168

Judging from the popularity and utility of VPNs in today’s Internet, we conclude that a

VPN-like technology is a much-needed tool for CCN.

In this section, we present CCVPN, the first CCN-based network-layer tunnel. Similar

to ANDāNA and AC3N, CCVPN encrypts interest and content packets between two end-

points. However, these end-points are network gateways instead of ARs. In the standard

configuration, both tunnel end-points are gateways between trusted domains. Tunnels may

also be nested, similar to IPsec [185]. One of the end-points (the source) can be an individual

consumer. In fact, the standard two-hop AR circuit is identical to a nested tunnel with

the same source. Though designed to use efficient symmetric-key cryptographic primitives,

CCVPN also works with public-key cryptography. This makes it easy to deploy in real-world

CCN networks.

We implemented CCVPN and experimentally assessed its performance. Our results indicate

that collective throughput across multiple consumers sharing a tunnel remains stable, up to

a modest bound of 60 consumers, each requesting content at the rate of 1 mbps. Moreover,

as expected, the average RTT of consumer requests decreases proportionally to collective

throughput and request rate. Further improvements in both throughput and perceived RTT

can be made with an implementation in a faster CCN router, such as that in the CICN

project [115]. We leave this for future work.

5.4.1 System Design

Virtual Private Networks (VPNs) support secure communication between networks on the

Internet. They allow users to send and receive data across insecure public networks as if

their computing devices were directly connected to the same private network [187]. The goal

of CCVPN is to provide users with analogous functionality within CCN.

169

Cr P

Ip Ip Ip Ip Ip Ip

CpCpCpCpCp Cp

Ie Ie

CeCe

/e/p

Consumer Domain Producer Domain

GC GP

keyin
pke

outin key
FIB PIT

/p
out
/e kr

Figure 5.12: CCVPN connectivity architecture

CCVPN involves four types of entities:

• Consumer: issues an interest for content it wants to retrieve.

• Producer: entity that creates and publishes content.

• Consumer-Side Gateway (Gc): end-point of the secure tunnel on the consumer side.

• Producer-Side Gateway (Gp): end-point of the secure tunnel on the producer side.

A secure CCVPN tunnel is uni-directional, i.e., for a given tunnel, the roles of Consumer

and Producer are fixed. (We use the term “uni-directional” to mean that all interests flow

in one direction, while all content flows in the opposite direction.) As discussed later, Gc

and Gp can run on the same platform to enable bi-directional communication composed of

two uni-directional tunnels. However, for clarity’s sake, we present them as separate logical

entities.

Figure 5.12 shows the flow of a single interest and content exchange over CCVPN. Entities

inside Consumer (Producer) domain form a physically interconnected private network. The

goal is to create an overlay network that joins Consumer and Producer networks such that

interest and content packets are only visible to entities within the respective domains.

170

Gc is an entity in Consumer domain that encrypts outgoing interests. Similarly, Gp decrypts

and forwards incoming interests. When a content packet is forwarded in response to an

interest, Gp decrypts incoming interests from Gc and forwards them in the Producer domain.

Gp effectively serves as a proxy for the original consumer. When the intended content is

returned to Gp, the latter encrypts (or encapsulates) the data before it exits the Producer

domain and is forwarded to Gc. Finally, Gc decrypts the content packet and forwards it

towards Consumer. We describe these steps in more detail below.

NOTE: We use the term “encryption” to denote authenticated encryption, i.e., encryption

and decryption algorithms that ensure plaintext integrity.

Upon arrival of an interest Ip, Gc performs a FIB lookup to check whether the interest’s

name prefix is among those used for VPN communication. (We assume Gc’s FIB is pre-

configured with the list of prefixes that require VPN tunneling, i.e, prefixes associated with

the producers in Producer domain in Figure 5.12.) If the FIB lookup succeeds, Gc obtains

Gp’s name (prefix) and public key (pke). Gc then runs Algorithm 14 to generate a new

interest Ie that encapsulates the original interest Ip.

First, Algorithm 14 generates a fresh and random symmetric key (kr), used later for Content

encryption and decryption. Next, it retrieves Gp’s name and public key from the FIB. It

uses the public key to encrypt16 the symmetric key kr and the original interest Ip.

It then creates the new interest Ie referring to Gp’s name with encrypted Ip as the payload.17

Ie is routed towards Gp. Since the payload is encrypted with Gp’s public key, only Gp can

decrypt it to obtain Ip and kr.

16In fact, for the sake of efficiency, hybrid encryption is used. For details on the hybrid encryption
implementation refer to [291].

17Recall that, since Ie carries an encrypted form of Ip in its payload, the name of Ie has a unique identifier
appended to it so as to prevent cache hits between Gc and Gp.

171

Algorithm 14 Consumer gateway interest encapsulation

Require: Original interest Ip(N)
Ensure: Encapsulated interest Ie(NGp)

1: kr←$ {0, 1}κ
2: NGp = retrieveNameFromFIB(N)
3: pke = retrievePKFromFIB(N)
4: payload = Encpke(Ip(N)||kr)
5: Ie(NGp) = createNewInterest(NGp , payload)
6: storeToPIT(Ie(NGp),kr)
7: return Ie(NGp)

Upon receipt of Ie, Gp verifies whether the interest name prefix matches one of its own. If

so, it runs Algorithm 15, using its private key (ske) to decrypt Ie, which yields Ip and kr.

Gp then stores Ie and kr in its PIT, as part of the entry for the pending interest Ip. In doing

so, Gp acts as a proxy consumer.

Algorithm 15 Producer gateway interest decryption

Require: Encapsulated interest Ie(NGp), Private key ske
Ensure: Original interest Ip(N)

1: payload = getPayload(Ie(NGp))
2: Ip(N)||kr = Decske(payload)
3: storeToPIT(Ip(N),kr,NGp)
4: return Ip(N)

Ip is forwarded inside the Producer domain until it reaches Producer or a cached copy of the

target content at some router within Producer domain. In either case, Cp is forwarded to

Gp. Upon receiving Cp, Gp does a PIT lookup using Cp’s name, i.e, name referenced in Ip,

to retrieve kr and Ie. Next, Gp encrypts Cp with kr, yielding encrypted content Ce with the

name Ie, as shown in Algorithm 16.

Next, Ce is forwarded back to Gc using router state previously established by Ie. Upon

receiving Ce, Gc invokes Algorithm 17: Gc performs a PIT lookup which matches Ce’s name

to the pending interest for Ie, and retrieves kr. Gc then decrypts Ce with kr and obtains Cp.

Finally, Cp is forwarded to Consumer using router state set up by Ip.

172

Algorithm 16 Producer gateway content encryption

Require: Original content Cp(N)
Ensure: Encrypted content Ce(NGp)

1: kr = retrieveKeyFromPIT(N)
2: NGp = retrieveNameFromPIT(N)
3: payload = Enckr(Cp(N))
4: Ce(NGp) = createNewContent(NGp ,payload)
5: return Ce(NGp)

Algorithm 17 Consumer gateway content decryption

Require: Encrypted content Ce(NGp)
Ensure: Original content Cp(N), or ⊥ on failure

1: kr = retrieveKeyFromPIT(NGp)
2: payload = getPayload(Ce(NGp))
3: Cp(N) = Deckr(payload)
4: if Cp(N) == ⊥ then . Decryption failed
5: return ⊥
6: else
7: return Cp(N)

As mentioned earlier, in the context of bi-directional communication, the same device can

run both Gp and Gc. The same holds for actual end-points, i.e., the same “box” can act as

Consumer in one uni-directional VPN tunnel, and as a Producer in the opposite-direction

uni-directional VPN tunnel. This applies to interactive-type communication, such as con-

ferencing or remote login where both end-points of the tunnel act as a producer and a

consumer.

We also note that CCVPN does not inhibit in-network content caching within domains.

Outside of the domains, i.e., between Gc and Gp, interest names are sufficiently random and

prevent cache hits. This is a side effect of the authenticated encryption mechanism used to

encapsulate Ip and form Ie. Finally, the roles of Gc and Consumer (or Gp and Producer)

can be collocated, as is the case with IP-based VPNs. This enables private one-to-one,

many-to-one, and one-to-many communication.

173

A trivial variation of CCVPN is the case when Gc and Gp have a shared pre-installed sym-

metric key. The only difference is that Algorithms 14 and 15 use symmetric key encryption

instead of PKE. We refer to this variation as symmetric-key CCVPN. This variant can be

configured if gateway keys are manually installed. Alternatively, a key exchange protocol

such as CCNxKE [228] can establish the gateway shared secret.

5.4.2 Threat Model and Analysis

This section discusses security considerations and properties of CCVPN.

Threat Model

We consider the worst-case scenario, where Consumer issues an interest that has not been

cached in any router in either Consumer or Producer domains. Therefore, the interest travels

all the way to Producer.

Adversary Goals and Capabilities. The goal of the adversary A is either: (1) to learn

some information about the original interest Ip or original content Cp, or (2) to learn the

identities of Consumer or Producer.

A is also considered successful if it impersonates Producer by faking a content packet. We

assume that A’s presence and activities are confined to the public networks, i.e., the Internet.

In other words, A has no presence in either Consumer or Producer domain. Also, since they

are part of Producer and Consumer domain, respectively, we assume that Gc and Gp are

not compromised.

We allow A to perform the following actions:

174

• Eavesdrop on traffic: A can eavesdrop on any link (outside Producer and Consumer

domains), thus learning packet contents and other characteristics, such as timing and

sizes.

• Compromise existing, or introduce new compromised, routers: this means

that A can inject, delay, and discard interest or content packets at will. If A compro-

mises an existing router, it learns all private information, including private keys and

cached content.

Security Analysis

In this section we analyze security of CCVPN. We aim to prevent A from achieving goals

outlined in Section 5.4.2. Formally, this translates into semantic security of all traffic, except

for whatever can be inferred by traffic analysis. Consequently, an off-path adversary can not

forge content packets with non-negligible probability. Our analysis relies on arguments in

the standard security model. It consists of assessing the security of the interest and content

encapsulation algorithms. Moreover, we assume that all interest and content packets are

padded to the standard MTU size between the gateways. (This is done in order to make

packets indistinguishable.)

Definition 5.1. An interest encapsulation algorithm Encapsulate(Ip) is indistinguishable

iff, given any two interests I1
p and I2

p , chosen by A, and a randomly selected bit b, A has

1/2 + ε(κ) probability of guessing the value of the bit b when given Ibe = Encapsulate(Ibp),

where ε is a negligible function in security parameter κ.

Theorem 5.1. Let Encapsulatepk(Ip) denote the interest encapsulation routine described in

Algorithm 14. If Encpk is a CPA-secure public-key encryption scheme, then Encapsulatepk(Ip)

is indistinguishable.

175

Proof; Suppose that Claim 5.1 is false. Then there is a polynomial adversary A capable of

guessing b in Definition 5.1 with non-negligible advantage, when given Ibe = Encapsulatepk(I
b
p)

with b ← {0, 1} chosen at random. We show that if A exists, it can be used to construct

another polynomial adversary ACPA which breaks CPA-security of Encpk. ACPA plays the

CPA-security game with a challenger sending it two messages: m0 and m1. Following the

CPA-security game, the challenger randomly chooses a value for the bit b′ ← {0, 1} and

gives back C = Encpk(m
b′) to ACPA. To break CPA-security ACPA must guess the value of

the bit b′ with non-negligible advantage. For that purpose ACPA queries the challenger for

encryptions of m0 and m1 (c0 = Encpk(m
0) and c1 = Encpk(m

1)) and construct two interests

I0
e = createNewInterest(Gpname, c

0) and I1
e = createNewInterest(Gpname, c

1), using the same

createNewInterest function used by algorithm 14, which is public (note that Gpname is also

public). Finally, ACPA gives I0
e and I1

e as input to A and outputs whatever A outputs. Since

under our assumption A guesses the bit b with non-negligible advantage, then ACPA breaks

the CPA-security of Encpk. Since this violates the hypothesis of Claim 5.1, A cannot exist.

Definition 5.2. A content encapsulation algorithm Encapsulate(Cp) is indistinguishable

iff, given any two content packets: C1
p and C2

p , chosen by A, and random bit b, A has

1/2 + ε(κ) probability of correctly guessing b when given Cb
e = Encapsulate(Cb

p), where ε is

negligible function in security parameter κ.

Theorem 5.2. Let ContentEnckr(Cp) denote the content encapsulation routine described

in Algorithm 16. If EncryptThenMACkr is an authenticated encryption (i.e., CCA-secure)

symmetric-key scheme used to construct ContentEncsk, then:

1. ContentEnckr(Cp) is an indistinguishable content encapsulation algorithm;

2. A negligible probability of generating a valid fake encapsulated content I ′c

Proof Follows directly from the definition of CCA-security for authenticated encryption and

from the same argument as in the previous proof. We therefore claim that nothing is leaked

176

in encapsulated interest or content packets as they are forwarded between gateways. Since

the only information in these packets is Gp and a random nonce derived from the encrypted

payload of Ie, A learns nothing about Ip or Cp, or the identities of Consumer or Producer.

Additional Considerations

Unlinkability between Consumer domain and encapsulated packets: An argument

similar to those in Sec. 5.4.2 can be used to show that, in a setting where multiple consumer

domains establish tunnels to a given producer domain gateway Gp, an outside observer

can not correlate (with non-negligible advantage) a given encapsulated packet (interest or

content) to the domain where the original interest was issued.

In fact, this is an advantage of CCVPN when compared to VPNs over IP. In IPsec, for

the sake of forwarding, each encapsulated packet carries source and destination addresses of

correspondent tunnel end-points. Thus, an outside observer can easily determine the two

domains that communicate encapsulated data. In CCVPN, encapsulated content packets

are forwarded to the consumer domain according to routers’ PITs, while interests carry

no source addresses. Thus, observing encapsulated packets gives no information about the

correspondent consumer domain.

Gateway-to-Gateway Authentication: In CCVPN, any host that has Gp’s public key

can initiate a tunnel with Gp. In other words, our design does not include any authentication

between tunnel end-points. We claim that Gp−Gc authentication is not required since it not

all application scenarios need it. For example, a producer offers its content to any consumer

while requiring that the latter request and receive such content privately. In this case, there

is no need for Gc to authenticate itself to Gp.

Another CCVPN use-case is where two physically separated private networks, e.g., offices of

the same company in different countries, need to behave as a unified network. In that case,

177

it is necessary to prevent an extraneous Gc, from connecting to Gp. Standard host-to-host

CCN security mechanisms can be used for mutual authentication between Gp and Gc, prior

to VPN communication. We leave the evaluation and specification of gateway-to-gateway

authentication protocols for future work. However, we note that CCNxKE [228], a CCNx-

compliant key exchange protocol, supports mutual authentication and could be used for this

purpose.

Denial of Service: Since CCVPN gateways face the public network they are clearly exposed

to DoS attacks. A DoS attack on Gp might involve flooding it with fake encapsulated

interests, while a DoS attack on Gc would consist of flooding it with an enormous amount

of encrypted content packets. The former is more dangerous, since interest decapsulation

involves a public-key decryption operation. If symmetric-key algorithms were used to encrypt

interest and content packets, efficacy of DoS attacks would be reduced, though not negligible.

We defer DoS counter-measures to future work.

5.4.3 Performance Assessment

We now discuss performance aspects of CCVPN.

State Consumption

CCVPN has an immediate impact on a gateway’s FIB and PIT sizes. (Cache size remains

unaffected since only decapsulated content objects are ever cached.) Let FS be the total size

of a standard CCN router FIB in bytes, and NF – number of FIB entries. For simplicity, we

assume that each name prefix in the FIB has a constant size of 64B. (We expect this to be

a reasonable upper bound in practice). Thus, FS = NF × s, where s is the size of each FIB

entry; s includes a name prefix (64B) and a bit-vector that identifies matching links for the

178

interface. We assume that a gateway has 128 links, which is a safe upper bound. Therefore,

s = 80B (= 16 + 64B). Now consider FIB size FG for a CCVPN gateway. Some entries of a

FIB will point to “private” prefixes, i.e., other domains, and therefore would be of larger size

to account for the corresponding prefix and key material. For both public- and symmetric-

key encryption, key size is the same: 32B [19]. Therefore, taking into account FIB entry

prefix key, target domain prefix, e.g., Gp, encryption key, and corresponding bit-vector, the

total size of one “private” FIB entry is 176B, meaning that FG = 176NFB. Thus, in the

worst case, CCVPN FIB is at most FG/FS = 176/80 = 2.2 times larger than the standard

FIB. In practice, however, we expect growth factor to be much smaller, since the fraction of

public-to-private FIB entries would be non-zero.

We apply the same analysis to PIT size. A standard PIT entry includes a complete name and

ingress bit-vector.18 A gateway PIT entry would contain the same elements as a standard

PIT entry, plus a symmetric key (32B), a nonce (12B), and an encapsulation name (64B

+ 32B) – the name of an encapsulated interest that includes an additional 32B payload ID

segment to identify the encapsulated value in the payload. Let PS and PG be the sizes of

the standard and CCVPN gateway PITs, respectively, and let NP be the number of PIT

entries in each individual table. Based on the above discussion, and assuming that a name

is at most 64B, a standard PIT entry is 80B, while a gateway PIT entry is 204B. Therefore,

in the worst case, CCVPN PIT would be at most PG/PS = 204/80 = 2.55B larger than the

standard PIT. Assuming a steady state size of approximately 1e5 entries [75], the PIT would

be 20.4MB – well within the capacity of modern routers.

18They may also include optional KeyId and ContentId. However, since they are included in the gateway
PIT as well, we omit them from this analysis.

179

Processing Overhead

A CCVPN gateway adds some new steps to the data path of a packet. The main com-

putational burdens are packet encapsulation and decapsulation. In the public-key variant

of CCVPN, gateways process interests using public-key encryption, while content – using

symmetric-key encryption. Let T PE (n) and T PD (n) be respective times to encrypt and decrypt

nB of data using a public-key encryption scheme. Similarly, let T SE (n) and T SD(n) be respec-

tive times to encrypt and decrypt the same amount of data with a symmetric-key encryption

scheme. Then, the latency of a single interest-content exchange is increased by:

T = T PE (nI) + T PD (nI) + T SE (nC) + T SD(nC)

where nI and nC are original interest and content sizes, respectively. As a rough estimate,

[4] lists the cost of AES-GCM to be 2.946µs for setup followed by 102MiB/second, on an

Intel Core 2 1.83 GHz processor running Windows Vista in 32-bit mode (with AES ISA

support). For packets that are at most 1, 500B, total processing time is ≈ 17µs. Moreover,

public-key encryption and decryption operations are always at least as expensive; thus,

total latency is increased by at least T = 4 × 17µs = 68µs. In comparison to network

latency for a single packet, this might be unnoticeable, though for a steady arrival state of

≈ 1e5, it would lead to an unstable system that would quickly overflow. (This is because

65µs× 1e5 = 6.8s.) Therefore, there is an upper bound on the number of private packets a

gateway can process per second. This bound is entirely dependent on system configuration

and network conditions.

Another performance issue stems from gateways not being able to process packets without

allocating memory. Specifically, each packet requires either an encryption or decryption.

However, since this cannot be done entirely in-place, the gateway must allocate some memory

for every packet, e.g., to store the MAC tag, to account for ciphertext expansion, or to apply

180

Figure 5.13: Testbed network topology with M consumers and N producers

padding. This overhead can outweigh that of cryptographic computations if packet arrival

rate is high enough. Therefore, when implementing CCVPN, special care must be taken to

ensure that memory allocation is minimized or avoided.

5.4.4 Implementation and Performance Assessment

We implemented CCVPN as a network-layer service running on the gateways of private

networks that compose the VPN (see Figure 5.12). The implementation uses the CCNx

software stack [1] and libsodium cryptographic library [19]. Both are publicly available

and written in C. For the public key version of CCVPN, we use the libsodium public-

key authenticated encryption API in the interest encapsulation and decapsulation routines

(Algorithm14, and Algorithm15 of Section 5.4.1). Internally, these perform a x25519 [55]

key exchange to derive a symmetric key that is then used to encrypt and authenticate

the interests in transit. AES256-GCM [108] is used to encrypt and authenticate content

packets (Algorithm 16, and Algorithm 17 of Section 5.4.1). Recall that symmetric keys

used to encrypt and authenticate content packets are generated and sent together with

the encapsulated interest in Algorithm 14. In the symmetric key version of CCVPN, both

181

300 900 1500 2100 2700 3300 3900 4500 5100 5700

SYMM
PKE

Content packet size = 10KBytes

Interests per second

T
hr

ou
gh

pu
t [

m
bp

s]

0
20

40
60

80
10

0
12

0

(a) Throughput

300 900 1500 2100 2700 3300 3900 4500 5100 5700

SYMM
PKE

Content packet size = 10KBytes

Interests per second
A

vg
. R

T
T

 [s
]

0.
0

0.
5

1.
0

1.
5

(b) Avgerage RTT

Figure 5.14: CCVPN performance with one consumer and one producer

interests and content objects are encapsulated with AES256-GCM under the assumption

that gateways already share a symmetric key.

Experiments presented in this section were performed on an Intel Core i7-3770 octa-core

CPU @3.40GHz, with 16GB of RAM, running Ubuntu 14.04 LTS. Content payload size

was fixed to 10KB. In each experiment, gateway processes, i.e., Gc and Gp processes, were

assigned high priority and ran on a single core. Our results indicate that interest encapsu-

lation (Algorithm 14) with public and symmetric key encryption cost approximately 700µs

and 520µs, respectively. Decapsulation via Algorithm 15 with public and symmetric key

decryption cost approximately 640µs and 400µs, respectively. Content encapsulation and

decapsulation with Algorithms 16 and 17, respectively, cost approximately 550µs and 460µs.

To evaluate the impact of CCVPN’s cryptographic overhead on overall network performance,

we measured network throughput and request-response RTT under various topology settings.

In our testbed, Gp and Gc are directly connected. N producers are connected to the former,

182

and M consumers – to the latter, as illustrated in Figure 5.13. We consider three variations

for values of [M,N]:

• One consumer and one producer [1, 1]: We slowly increase interest issuance rate

until we can to determine maximum network throughput and impact on RTT, as

congestion increases.

• Multiple consumers and one producer [M, 1]: We fix interest issuance rate so

that each consumer requests ≈ 1 mbps of content, and gradually increase the number

of consumers, until throughput per consumer starts to decrease, i.e., until congestion

starts to occur. All interests coming from all consumers are served by a single producer.

• Multiple consumers and multiple producers [M,N]: We gradually increase the

number of consumers. However, we also increase the number of producers by the same

amount in each round, i.e., M = N . The number consumers and producers is increased

until congestion is detected.

In all of the these settings, every interest is a unique request for a unique content. Therefore,

experimental results reflect throughput and RTT in the worst-case scenario, i.e., no content

caching at the gateway. The results are presented with 95% confidence intervals.

Figure 5.14 shows network performance when [M,N] = [1, 1] as consumer’s request rate

increases. The network achieves maximum throughput of 100 mbps in the public key version

and slightly higher throughput of 110 mbps in the symmetric key version. Average RTT per

message starts to increase as interest issuance rate approaches maximum network throughput

– a sign of congestion.

Results for multiple consumers requesting content from a single producer ([M, 1]) are shown

in Figure 5.15. When requesting at rate of 1 mbps, each consumer achieves near-optimal

throughput (1 mbps) when less than 50 clients request content simultaneously. With at least

183

10 20 30 40 50 60 70 80 90 100

SYMM
PKE

Content packet size = 10KBytes

Simultaneous clients

T
hr

ou
gh

pu
t p

er
 c

lie
nt

 [m
bp

s]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Throughput

10 20 30 40 50 60 70 80 90 100

SYMM
PKE

Content packet size = 10KBytes

Simultaneous clients

A
vg

. R
T

T
 [s

]

0
10

20
30

40
50

(b) Average RTT

Figure 5.15: CCVPN performance with multiple consumers and one producer

10 20 30 40 50 60 70 80 90 100

SYMM
PKE

Content packet size = 10KBytes

Simultaneous clients

T
hr

ou
gh

pu
t p

er
 c

lie
nt

 [m
bp

s]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Throughput

10 20 30 40 50 60 70 80 90 100

SYMM
PKE

Content packet size = 10KBytes

Simultaneous clients

A
vg

. R
T

T
 [s

]

0
10

20
30

40
50

60

(b) Average RTT

Figure 5.16: CCVPN performance with multiple consumers and multiple producers

184

60 clients average RTT starts to increase due to congestion, and average throughput for each

client gradually goes down.

Since a CCN producer must sign every content19, congestion observed in Figure 5.15 might

be influenced by the overhead of having a single producer signing a large number of interests,

in addition to gateway cryptographic overhead. To evaluate this effect in Figure 5.16, we

show average throughput and RTT in the [M,N] scenario, where M = N and each consumer

requests from a fixed producer at a rate of 1 mbps. Here, results are slightly better. The

network offers requested throughput (1 mbps per client) with at most 60 nodes, in the public

key version, and at most 70 nodes, in the symmetric key version.

Discussion

CCVPN exhibits moderately good results with respect to network load capacity, considering

overhead incurred by deploying secure tunnels over the CCN architecture. With gateway

processes running each on a single core of a single processor, the VPN can provide reasonable

throughput to at most 70 consumers. These performance results represent a lower bound

that can be improved in several ways, such as:

1. Implementation optimization: CCNx software stack is an on-going research project

and it prioritizes functionality over performance. We believe that CCVPN performance

can be significantly improved by optimizations that do not rely exclusively on CCVPN

design, but also in CCNx software.

2. Distributed and parallel processing: In a real deployment scenario, a large orga-

nization that wants to use CCVPN would have dedicated network devices running the

gateway service, possibly in multiple cores. Also, multiple VPN gateways can share

the load in a large organization.

19Unless the content can be requested by hash.

185

3. Caching: Content caching is a major advantage of CCN, as compared to IP. Our

experiments evaluated worst-case scenarios, i.e., consumers always request distinct

content packets and caching does not occur. In a real-world deployment, popular

content (inside the VPN) would be cached, thus increasing throughput and reducing

RTT.

5.5 Transparent Packet Security

Confidentiality is an application-layer function since it requires some form of authorization.

The same is not true for privacy. As of late, privacy is considered a necessary feature for

emerging Internet protocols due to growing evidence of large-scale network packet intercep-

tion and eavesdropping by unauthorized entities [82]. Specifically, pervasive eavesdropping

and monitoring is now considered an attack on privacy [114]. To combat these attacks, ubiq-

uitous and opportunistic encryption protocols are being standardized for IP-based protocols

such as TCP and DNS, e.g., [60, 61, 347]. Consequently, any viable IP alternative, especially

CCN, should deal with privacy issues an equally application-agnostic, end-to-end manner.

To the best of our knowledge, there has been no concrete work towards this goal in the CCN

community.

In this section we present TRAPS, a mechanism that enables transparent packet security for

CCN that, unlike traditional end-to-end encryption mechanisms, does not prohibit packet

caching in the network. TRAPS is built on the premise that if one knows an application

name of content, then it can obtain and decrypt data. Otherwise, without knowledge of

the application name, data remains encrypted and secure. TRAPS uses application names

to create obfuscated network counterparts and encrypt the corresponding content. Thus,

TRAPS can be implemented entirely at end hosts, i.e., consumers and producers, as is done

186

for protocols such as tcpcrypt [61]. Moreover, TRAPS can be extended with stronger end-to-

end encryption that makes knowledge of an application name insufficient to decrypt content.

Our contributions are three-fold:

• The first lightweight, application-transparent “transport” security protocol for CCN.

• End-host network stack modifications necessary to support TRAPS.

• Analysis of TRAPS security subject to passive eavesdroppers and the performance

overhead incurred by end-hosts.

5.5.1 Separating Privacy and Confidentiality

Privacy and confidentiality are pervasive problems in CCN. While they may seem to be

orthogonal issues, they stem from the fact that some packet fields are not encrypted unless

explicitly done so by applications. Cleartext packet data (and metadata) can reveal details

about producers and intent of the data contained in content objects. It can also leak infor-

mation about content requested by particular consumers. One goal of TRAPS is to provide a

transparent mechanism to deter or prevent such types of inference. In this section, we review

previous proposals of content confidentiality and problems of name privacy to motivate the

need for TRAPS.

Confidentiality Conundrum

Content confidentiality prevents unauthorized parties from accessing protected content. This

can be achieved with some form of CBAC or IBAC. (See Chapter 4 for examples.) Other

(albeit futile) possibilities include specifying little or no cache time for content objects.

Assuming routers are honest, this means that all interests would be routed to producers,

who could then determine access rights to content on a per-interest basis. This would

187

require consumers to provide some form of unforgeable identity or authentication token that

could be used by the producer to make this authorization decision. The effect of caching on

limited availability can therefore be perceived as a very weak network-layer confidentiality

enforcement mechanism.

CBAC is the most popular access control design in CCN. However, content encryption need

not necessarily be done by applications. CCN lacks an encryption mechanism that (a) does

not involve or require any application input and (b) is implemented above the network layer.

To the best of our knowledge, there is no protocol for enabling such transparent encryption

between consumers and producers. We claim that such a protocol is both necessary and

timely given that CCN and related architectures are maturing and privacy (via encryption)

is paramount.

Pitiful Privacy

Privacy is often an overlooked property in CCN. Many applications rely on well-formed,

deterministically generated, and meaningful names to ease developer burden. For exam-

ple, in NDN-RTC [162], audio segments are assigned names with the following format:

<prefix>/ndnrtc/user/<username>/streams/audio0/<bitrate>/.... This leaks an unneces-

sary amount of information about the contents and subjects of a conversation. Overcoming

this privacy challenge has deep implications on how names are conveyed to the network.

Ghali et al. [146] confirmed (often unstated) intuition that names must be indistinguish-

able from random strings in order to guarantee some measure of privacy. Their analysis

shows that any technique which can decouple application names, such as the example above,

from those which are carried in packets will improve privacy. This separation is another

motivating principle for TRAPS.

188

5.5.2 Threat Model

As the name suggests, the goal of TRAPS is to transparently encrypt packets to improve data

privacy – not confidentiality. Our adversary A is one which attempts to learn the identity

(application name) of encrypted content. A is active and has the ability to compromise any

router in the network. A can perform any action on compromised routers.

Moreover, we assume A can compromise any producer at will. In doing so, A may view all

data under control of such a producer. Once a producer is compromised, all of its data is

said to be exposed. A may also compromise consumers to control their traffic and view past

data that was received. We call data visible to A after a consumer has been compromised

exposed data. An important criteria for TRAPS is that exposed data does not cause immediate

harm for non-exposed data, i.e., data which has not yet been requested by the compromised

consumer or data that is owned by a non-compromised producer.

Unlike standard encryption protocols, such as TLS [107], wherein there is assumed to be

a global PKI or possibly shared secrets between trusting parties, we choose to restrict our

notion of “transparent” to one in which we rely on neither. As such, security of TRAPS

cannot depend on pre-configured certificates or previously exchanged secrets. (We explicitly

omit a design requiring key exchange protocols for TRAPS since it implies an association.

As we will discuss later, a goal of TRAPS is to not break the data-oriented nature of CCN.)

Rather, TRAPS depends on implicitly shared knowledge between consumers and producers.

Since there are no cryptographic secrets shared a priori, TRAPS security is a function work

expended by A to learn this implicit information. By default, TRAPS is not intended to be

computationally or information-theoretically secure such as is the case with TLS [107]. A

powerful enough adversary could break it, but at a cost that is a design parameter for the

protocol.

189

5.5.3 Transparent Packet Security

In this section we describe TRAPS and how it sets out to achieve security goals outlined

above. First, we clearly state TRAPS requirements:

R-1. TRAPS should be completely transparent to applications. Neither consumers nor pro-

ducers should be required to opt in to the protocol. However, TRAPS may be exposed

to applications to enable stronger security properties.

R-2. TRAPS should not require consumers or producers to share any cryptographic secrets

or perform any sort of key establishment.

R-3. TRAPS should not break the data-centric and request-based model of CCN. As a result,

features such as caching should still work with TRAPS.

R-4. TRAPS security should be a tunable parameter that has a reasonable default and, if

desired, can be decided upon by producers and conveyable to consumers. Moreover,

consumers and producers should be able to opt-out of TRAPS if desired.

The core idea of TRAPS is that implicit knowledge of a name is considered a shared secret

between a consumer and producer. Consumers know a priori (or learn through some out

of band mechanism) content names, whereas producers know what (static) content they

provide and are willing to publish. In TRAPS, knowing a name is sufficient to decrypt a

packet. Without a name, data remains encrypted. Thus, names can be viewed as a type of

password needed to access content. Cryptographic secrets can be derived from names, and

later used to protect both the wire-encoded name and data. An eavesdropper who sees a

protected request and response learns very little. Moreover, they would have to expend a

non-negligible amount of effort, in terms of computation and memory resources, to learn the

underlying data.

190

Protocol Overview

TRAPS builds on a couple of new of cryptographic primitives. The first of which are memory-

hard functions (MHFs) [249]. A MHF is a function which, on a random access machine,

requires S(λ) space and T (λ) operations to compute, where S(λ) · T (λ) ∈ Ω(λ2) and λ is

the security parameter. Optimally, a MHF requires just as much space as it does opera-

tions. MHFs are intentionally expensive to compute since they are meant to deter one from

computing massive numbers in parallel with custom hardware.

Another primitive we rely upon is so-called convergent or message-locked encryption (MLE)

[52]. A MLE scheme is one where the (symmetric) key used to encrypt and decrypt a message

is derived from the message itself. In [52], the symmetric key k for message M is derived as

k = H(M), where H is a suitable cryptographic hash function, such as SHA-256. To encrypt

a message M , one then computes a tag T = H(k) and ciphertext C = Enck(M), and outputs

(C, T). Decrypting and verifying (C, T) requires one to decrypt C, derive tag T ′, and check

if T ′ == T . MLE schemes are deterministic and therefore enable secure de-duplication;

identical messages will be encrypted to identical ciphertexts. TRAPS exploits this property

for a large class of traffic – specifically, static data.

At a high level, TRAPS can be viewed as a composition of a password-hashing and message-

locked encryption. It uses name obfuscation (via hashing) and (message-locked) content

encryption to protect names and data, respectively. Name obfuscation uses a cryptographic

(or memory-hard) hash function F to map meaningful names to random correspondents as

described by Ghali et al. [145]. (The need for memory-hard variants of F is discussed in

Section 5.5.4.) Content encryption uses secret-key cryptographic algorithms (Enck(·) and

Deck(·)) for efficiency. We also make use of a key derivation function (KDF), e.g., HKDF

[194].

191

TRAPS is configurable and accepts the following inputs: Security parameter λ, obfuscation

function F : {0, 1}∗×{0, 1}∗ → {0, 1}λ, and a salt generation and rotation functions, sG and

sR, respectively. We denote a specific configuration of TRAPS as TRAPS(λ,F, sG, sR).20

The complete end-to-end operation of TRAPS(λ,F(·),⊥,⊥) – the default configuration – is

shown in Figure 5.17. (If not specified, λ = 256, F = SHA-256, and sG = sR =⊥.) Recall

that, to obtain data D with name N , denoted D(N), consumers issue a request (interest)

for D(N), denoted I(N). We refer to the i-th segment of N as Ni. If D(N) is chunked

into n pieces, we denote Di(N) as the i-th piece. The unique identifier for D(N) is its

cryptographic hash digest, denoted DID(N). Detailed descriptions of each step in TRAPS

are given in Algorithms 18, 19, and 20, and a complete depiction of TRAPS encryption is

shown in Figure 5.18. Observe that if a different consumer Cr′ application issues an interest

for the same name N , and this interest is routed along a path containing a router which

has cached the obfuscated content object C(N̄), the content object will be returned to Cr′

as expected. Since C(N̄) contains the name N̄ and nonce r, Cr′ can decrypt C(N̄) before

passing up C(N) to the application. Thus, TRAPS can still exploit caches. An alternative

strategy would have been for consumers to provide their public key in each interest, similar

to DNSCurve [56]. Producers could encrypt the random content encryption key using this

public key and return it in response. This, however, would invalidate caches.

TRAPS is transparent to the network. Only the producer and consumer applications see

application names; all network entities, such as routers, deal only with obfuscated network

names and encrypted content objects. Moreover, since the translation is deterministic, router

processing is unaffected. (Equality on N is identical to equality on N̄ .) Applications may

configure TRAPS by choosing λ, F, sG, and sR as needed.

20When not needed, we omit these parameters for presentation clarity. Also, by default, sG = sR =⊥,
meaning that the salt is the empty string and never changes. If sG =⊥, then it simply returns an empty
string upon any input.

192

1. Consumer Cr’s application issues interest I(N) to its network stack.
2. Cr’s network stack computes obfuscated interest I(N̄) = Obfuscate(F, sG, I(N)).

(Obfuscate is detailed in Algorithm 18.) Cr issues I(N̄) to the network.
3. Routers forward I(N̄) to P .
4. P ’s network stack recovers N from I(N̄) by looking up N in a table that maps all

obfuscated names to their application representations.21 P ’s stack then forwards
N to the application.

5. P ’s application returns C(N) to its network stack.
6. P ’s network stack computes encrypted content object C(N̄) =

EncryptContent(C(N)). If required, C(N̄) is then signed. P issues C(N̄) to
the network.

7. Routers forward C(N̄) to Cr.
8. Cr’s network stack computes C(N) = DecryptContent(C(N̄)) and passes it up to
Cr’s application.

Figure 5.17: TRAPS protocol summary

Based on these algorithm descriptions, the only state needed for TRAPS is a table that

maps obfuscated names to their original counterparts. For consumers, this table size is of

order equal to the number of outstanding interests. An entry is created for every issued

interest and then subsequently removed when the corresponding content object is returned

and consumed. Insertion, search, and deletion in this table are all O(1) operations if a hash

table implementation is used. In addition to this state, the component needs a suitable

source of entropy to derive content encryption keys. For producers, this table is of size

proportional to the total number of published content objects.

Algorithm 18 Obfuscate(F(·), sG, I(N))

1: s = sG(now())
2: N̄ = []
3: for i = 1→ |N | do
4: N̄ = Append(N̄ , F(N1|| · · · ||Ni||s))
5: InterestMap[N̄] = I(N)
6: return I(N̄)

193

N = /a/b/c

D(N)N̄ = F(N, s) k = KDF(N ||r)

Enck(D(N))

Enck(D(N))

N̄

C(N̄)

sG(now())

Figure 5.18: TRAPS translation and construction procedure

Algorithm 19 EncryptContent(C(N), λ)

1: r ← {0, 1}λ
2: k ← KDF(N ||r)
3: ¯payload = Enck(D(N))
4: C(N̄) = (N̄ , ¯payload, r)
5: return C(N̄)

Algorithm 20 DecryptContent(C(N̄))

1: I(N) = InterestMap[N̄]
2: k ← KDF(N ||r)
3: payload = Deck(C(N̄). ¯payload)
4: C(N) = (N, payload)
5: return C(N)

Static Content

For static content, it is common for a consumer to request N with DID(N). Doing so

requires knowledge of DID(N) a priori. This is typically obtained in a Manifest, denoted

Manifest(D(N)). As described in Chapter 3, consumers first fetch the manifest pertaining

to a collection of static content objects and then use its contents to subsequently request

constituent chunks by their unique identifier. TRAPS can be also applied to each content

object chunk in a manifest. However, there is a subtle detail to consider here. Since chunks

potentially share locators (names), they will also use identical encryption keys. Thus, we

must convey a proper IV or nonce for each one (depending on the encryption mode of

194

operation) such that encryption remains secure.22 Also, if an encryption key is derived from

N , then each encrypted chunk becomes forever bound to N . This prevents de-duplication

of nameless chunks that move around under different locators.

Therefore, to support de-duplication even when N (the locator) changes, encryption keys

must be based on something else. To address this problem, we turn to MLE. In particular,

we let the encryption key for a chunk be derived from its application data contents and,

optionally, a name as well. This name can be N or N̄ , depending on how restrictive are

the requirements for access to D(N). Let KeyGen(·, ·) be a function that takes as input

D(N) and (optional) name N ∈ {⊥,N} to compute an encryption key k. A key k =

KeyGen(D(N),⊥) encrypts content such that it can be accessed with any locator. A key

k = KeyGen(D(N), N) will bind k to locator N . Lastly, a key k = KeyGen(D(N), N̄) binds k

to an ephemeral, obfuscated locator. The exact derivation mechanism to be used is a design

choice for producers, provided they convey this decision to consumers. By default, the

k = KeyGen(D(N),⊥). With k, the producer can then encrypt each chunk Di(N) ∈ D(N)

in such a mode that permits random access decryption. (This is necessary so that chunks

may be received out of order or in partial without preventing their use.) For integrity reasons,

the producer should also generate a tag as outlined in Section 5.5.3. This tag can be included

in content objects in place of a signature.

The final part of this approach is to convey DID(N) to consumers, since a consumer cannot

derive a hash for content to which it does not have access. For this, we use Manifest(D(N)).

FLIC manifests already carry DID(N) as additional metadata. Thus, after retrieving a FLIC

manifest, a consumer can derive decryption key(s) for constituent chunks. Figure 5.19 shows

this manifest-based construction visually.

22Reusing a key and nonce pair with AES-GCM has disastrous consequences, see e.g., [64].

195

Figure 5.19: TRAPS hash-based construction procedure

Dynamic Content

The protocol described in Sections 5.5.3 and 5.5.3 assumes that all content is static. This en-

ables producers to precompute data to map network names to their application counterparts.

This is not possible for dynamic content due to preimage-resistant nature of F.

There are (at least) two ways to support dynamic content with TRAPS. The first is to

additionally encrypt N , with application-specific segments, under the producer’s public key

pkP . This encrypted name could be included in the payload of the interest so that routing

still occurs on N̄ . When an interest I(N̄) of this form arrives at a producer P , the latter can

decrypt I(N̄)’s payload using skP to recover N . To acquire pkP without first communicating

with P , consumers could use a key-resolution service such as CCN-KRS [209]. A second

alternative is for consumers to establish a session using, e.g., the CCNxKE protocol, over

which to transfer encrypted dynamic content. Note that this approach requires consumers

196

and producers to opt-out of TRAPS so that name transformations are not inadvertently

applied.

Discovery and Interoperability

TRAPS relies on consumers knowing the name of content they wish to access. Encrypted

nameless objects are protected from eavesdroppers if their parent packet plaintext hash di-

gests are unpredictable. In section 5.5.3, we assumed that manifests carrying these hash di-

gests were themselves encrypted using TRAPS. Therefore, if manifest names are predictable,

then hashes can be discovered by anyone. To improve this, manifests could be protected in

a number of different ways. First, a secure session established via CCNxKE could be used

to transfer manifests. This would prevent passive eavesdroppers between consumers and

producers from learning manifest contents. Alternatively, if access control schemes such as

IBAC are used, wherein consumers and producers share keying material that can be used to

encrypt names, then manifests could be fetched with encrypted names. While using a session

or IBAC to fetch manifests would work, both introduce extra complexity into applications

that is otherwise not needed by TRAPS.

Dictionary Attacks

When sG =⊥, TRAPS is susceptible to dictionary attacks [254] since the only secret infor-

mation in the protocol is N , the application name, which is known by all consumers who

request content.23 A dictionary attack is where an adversary precomputes hash digests from

a dictionary or list of popular inputs (names) so as to easily reverse these values. The

23Using deterministic public-key encryption for name obfuscation would serve no better than the hash
function. Since adversaries would also have access to the producer’s public key, and could therefore compute
the obfuscated names as easily as regular consumers.

197

first dictionary attack deterrence built into TRAPS is the use of salts, generated via sG, to

obfuscate names.

There are several possible options for sG. The first is for sG to return s←$ {0, 1}λ, and to

rotate (update) this value every sR() seconds. One problem with salts is consumer synchro-

nization: how does a consumer get a salt before fetching I(N)? If salts are explicit, then

producers must generate and publish them for consumers to obtain. Specifically, let Ns be a

salt name published with obfuscated name Obfuscate(F, sG, Ns). Cr could issue an interest

for Ns to obtain the salt s, and then use s to subsequently derive names of desired content.

We recommend a simpler input for the salt: time. Here, sG is equal to the current time

epoch divided by sR. For example, if the current time epoch (UNIX time) is 1483921358

(01/09/2017 @ 12:22am UTC), and sR is 10000, then s = 1483921. Consumers and producers

share knowledge of time and can be assumed to be in sync within some loose margin of

error. As the granularity of time (sR) decreases, the probability that it is shared between

consumers and producers increases. Of course, since time is predictable, it is possible for a

powerful attacker to pre-compute obfuscated names with future versions of time. This could

be mitigated by mixing both time and a producer-provided salt on a regular frequency. For

example, producers could publish a new salt every day or week, which would then be required

when computing F.

Another deterrence built into TRAPS is to use MHFs as F. These dampen the efficacy of

offline dictionary attacks while adding more online computational and memory overhead to

consumers. This performance tradeoff is assessed in Section 5.5.5.

198

5.5.4 Security Analysis

Recall that one TRAPS goal is to allow anyone with knowledge of or access to N to request

and decrypt it accordingly. Conversely, it should be hard for anyone without N to request

and decrypt content. In our threat model, this is captured by an eavesdropping A whose

goal is to decrypt a packet it observes in transit. There are two types of packets considered

in this model: those with and without a content identifier (or named and nameless content

objects, respectively). By design, security of each is based on unpredictability of either a

name or plaintext content, as we describe below.

Following Bellare et al. [52], we define an MLE encryption scheme to be a tuple of algorithms

MLE = (P,K,E,D, T), responsible for parameter initialization, key generation, encryption,

decryption, and tag generation. In [52], MLE schemes were proven secure in a so-called

chosen distribution attack (CNDA) scenario. The main idea is that if each message that

can be drawn from the source of messages is unpredictable, then the scheme is secure with

overwhelming probability. Formally, a source is a polynomial-time algorithm NGD(N) that,

on input 1λ, returns a list of names N0, . . . , Nγ−1, where Ni ∈ N , and some auxiliary

information Z about those names. Each name is sampled from the distribution D(N) and

has the same length m(λ). (In our scenario, we let γ = 2 without loss of generality.)

Using this information, we now define the main privacy game as follows. Let At,s be A

parameterized by computation time t and space parameters s. When not needed, we omit

these parameters.

Game PRV-CNDAAMLE,NGD(N)

P ←$P(1λ)
b←$ {0, 1}
(N0, N1, Z)←$ NGD(N)(1

λ)
Cb←$ EP (KP (D(Nb)))
b′ ← A(P,Cb, Z)
return b = b′

199

For this game, A’s advantage is defined as

Aprv−cda
MLE,NGD(N),A = 2 · Pr[PRV-CNDAAMLE,NGD(N)

]− 1.

TRAPS is PRV-CNDA secure if Aprv−cda
MLE,NGD(N),A is a negligible function in λ. To be precise, we

require that the symmetric-key encryption scheme has both key recovery (KR) security and

one-time real-or-random (ROR) security [52].24 With this, we are now prepared to define

the security of TRAPS.

Theorem 5.3. Let KDF be modeled as a random oracle and let SE = (SK, SE, SD) be a

one-time symmetric encryption scheme with key length k(·) is KR- and ROR-secure. Let

MLE(SE) be a MLE-scheme instantiated using SE. Then, all non-exposed data protected by

TRAPS are PRV-CNDA-secure.

Proof. First, observe that A can effortlessly see N for any data generated or requested by

an exposed producer or consumer, respectively. Moreover, any exposed data item D(N)

is inherently insecure since A knows N and can therefore decrypt the packet. Now, by the

name-to-data binding property in CCN, there is a one-to-one correspondence between names

and data. Therefore, it follows that the distribution of names is equivalent to the distribution

of data. Thus, by the proof given in [52], it follows that non-exposed named packets protected

by TRAPS are PRV-CNDA-secure. Since TRAPS is used to protect named content objects,

which in turn protects nameless content objects, PRV-CNDA-security follows for them as

well.

If manifest(s) used to convey data digests is (are) protected using a CCA-secure encryption

scheme [180], then security can be improved to that of PRV-CDA [52], which is similar to

PRV-CNDA security except that it depends on content object unpredictability rather than

name unpredictability. (Typically, data have more entropy than names.)

24The reader is referred to [52] for formal definitions of these schemes.

200

Theorem 5.4. Let KDF be modeled as a a random oracle and let SE = (SK, SE, SD) be

a one-time symmetric encryption scheme with key length k(·) is KR- and ROR-secure. If

the Manifest(s) carrying data digests are protected with CCA-secure encryption, then the

corresponding nameless packets which are protected by TRAPS and not exposed are PRV-

CDA-secure.

Proof. CCA-security implies semantic security, and therefore no information is leaked from

an encrypted Manifest. Moreover, since data items Di(N) are not exposed, A has no in-

formation about their contents. Thus, PRV-CDA security follows immediately by the proof

given in [52].

The Long Tail

TRAPS security vanishes as information (names and data) become predictable. This is

because trial decryption driven by dictionary attacks are possible. However, there is one

crucial element of TRAPS that limits trial decryption attacks: Since each content key is

derived from a fresh and random nonce, A cannot attempt trial decryption until after it

observes an encrypted content object. This means dictionary attacks targeting the content

must be online. Given realistic traffic volumes on modern networks, this means A has to

either have a tremendous amount of computational resources available or must be selective

in which content it attempts to decrypt. Both conditions make less popular or predictable

content, i.e., content in the “long tail” of the popularity distribution, intuitively safer.

Another avenue for attack is through the obfuscated name via an offline dictionary attack.

The cost of the dictionary attack is controlled by F. To illustrate this effect, let the security

of F be defined by space and time parameters s and t. Let N be a set of names from which

the attacker will sample. Moreover, let D(N) be the distribution of these names such that

D(N) for N ∈ N is the probability that N is selected when sampled from N. An optimal

201

dictionary attack is one where A proceeds as follows. A traverses D(N) in descending order

by probability and computes Obfuscate(F, sG, I(N)) for each N until the target value is

found. We may estimate this attack complexity as follows. Let N∗ be the actual name

represented by a packet with the obfuscated name N̄ . Let C(s, t) be the cost of computing F

given parameters s and t. Assuming N∗ is the k-th most popular name in D(N), this attack

will require (at most) k computations of Obfuscate and therefore cost k×C(s, t). This leads

to the following minimum work bound for these offline dictionary attacks.

Definition 5.3. Given a space and time parameters s and t, as well as a set of names N

with distribution D(N) whose expectation is E(N) and PMF is f(·), the average amount of

work required to conduct a dictionary attack on one name N ← N is (1−f(E(N)))×C(s, t).

If D(N) is the uniform distribution with 10 elements, then the expected cost is 5 × C(s, t).

Similarly, if D(N) is the Zipf distribution with 10 elements, whose expected value is H10,α−1

HN,α
,

then the expected cost is (1− H10,α−1

HN,α
)×C(s, t). The cost scales linearly as the set of names

increases.

5.5.5 Performance Assessment

In this section we assess the performance of TRAPS. All experiments were performed on a

workstation with a 2.8 GHz Intel Core i7 CPU and 16GB of 1600 MHz DDR3 RAM running

Ubuntu 14.04.

End Host Overhead

Computationally, TRAPS only introduces overhead at consumers and producers. Routers and

other network entities are unaffected by interests and content object messages using TRAPS

name obfuscation and content encryption. Therefore, to assess TRAPS performance, we

202

quantify overhead incurred by consumers and producers. This overhead is divided into four

parts (steps): (1) interest obfuscation, (2) interest de-obfuscation, (3) content encryption,

and (4) content decryption. Each of these procedures adds processing overhead to every

interest and content object pair.

To quantify this processing overhead, we implemented each of operation in C on top of the

Libccnx and Libparc [1] libraries. For input, we used the Unibas dataset from the The

Content Name Collection [11], which contains unique URLs submitted by users to URL

shortener websites. We converted these URLs into a CCN-compatible name format. For

example, the URL http://www.domain.com/file.html was converted into the CCN name

/com/domain/file.html.

This dataset does not provide any information about the corresponding content object sizes,

so we randomly generate the sizes between the range of 1.5KB and 9KB. For efficiency, we

use ChaCha20+Poly1305 [244] content object encryption. Randomness for nonce generation

is drawn from /dev/urandom since it does not block when insufficient entropy is available.

For comparison we use both SHA-256, which is not a MHF, and Argon2 [59], which is a

recent MHF, as the name obfuscation function F. Our experimental software is available

online at [14].

Figure 5.20 shows results from this experiment. The left plot uses Argon2d with parameters

t = 6 and m = 12 (212 KiB) and the right plot uses SHA-256. The name de-obfuscation

procedure (Step 2), which is simply a hash table lookup, is negligible compared to other

steps. Request obfuscation is most expensive since it requires computation that is linear

in the length of each input name. Content encryption and decryption perform moderately

better; encryption involves more work since it must first sample randomness necessary to

generate each random nonce. Overall, the worst-case time for a single step in TRAPS on our

machine is approximately 60µs, which is well below average network I/O bottlenecks and

therefore feasible.

203

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Number of Segments

0

10

20

30

40

50

60
Ti

m
e

(u
s)

Step 1
Step 2
Step 3
Step 4

(a) F =Argon2 (default parameters)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Number of Segments

0

10

20

30

40

50

Ti
m

e
(u

s)

Step 1
Step 2
Step 3
Step 4

(b) F =SHA-256

Figure 5.20: TRAPS performance overhead

Consumer Throughput

Name obfuscation step is the most expensive step in TRAPS and thus a throughput bottle-

neck. Using MHFs instead of traditional hash functions lowers the throughput ceiling even

204

further. Thus, applications must take care to not use Fs that disrupt normal QoS. This has

two implications on F: (1) computation overhead must never exceed network overhead and

(2) the number of possible hash functions per second should always exceed the number of

packets sent per second. This suggests two strategies in selecting F and its parameters. Let

R be the maximum number of bytes per second sent by a client Cr. Let L be the minimum

link MTU from Cr to each producer P1, . . . , Pn. Let Tmin be the minimum RTT between

Cr and any Pi. Finally, let Tobf be the (worst-case) time required to obfuscate a name in a

single packet.

Based on the previous two conditions for throughput, it must be the case that

PTobf
L

< 1 (5.1)

and that Tobf ≤ Tmin. Equation 5.1 states that the total time consumed by hashing all

required packets in an epoch does not exceed one second. Otherwise, the system would be

unstable since the client could not keep up with the desired packet transmission rate.

Equation 5.1 also places an upper bound on the number of packets that can be sent every

second. Given Tobf and assuming an approximate value of L = 1500B, we can compute

an upper bound on P to satisfy this inequality. That is, we can find the largest P such

that P < L
Tobf

. To estimate this capacity, we profiled SHA-256 and Argon2 to measure the

expected throughput under a variety of configurations. Figure 5.21 plots the results using

Argon2 with t = 4 and m ∈ {21, 25} and SHA-256 as F. As expected, we can achieve packet

throughput rates on the order of 108 interests/second with SHA-256, but with a m = 25 (225

KiB) memory cost for Argon2 this drops down to 105 interests/second.

We may also write Equation 5.1 as

Tobf <
L

P
(5.2)

205

1500 3000 4500 6000 7500 9000
Packet Size [B]

104

105

106

107

108

Th
ro

ug
hp

ut
 C

ap
ac

ity
 [p

ac
ke

ts
/s

ec
on

d]

ARGON2(4-25)
SHA256
ARGON2(4-21)

Figure 5.21: TRAPS throughput capacity

and, for reasonable values of P , find F parameters that bring it close to this upper bound.

For example, assume P = 100Mbps and L = 1500B. Then, Tobf < 15µs. This is well within

the bounds when using SHA-256 as F. However, this is not the case for Argon2. For P

values of 2Mbps and 128Mbps, Argon2 parameters t = 8 and M = 26 can be used to meet

throughput criteria. Larger values for m indicate that more memory is used for the function,

which is the ultimate limiting factor in its performance as well as the primary factor in

its security (see [59] for more details). For comparison, Netflix Ultra-HD quality streaming

requires a throughput of 25 Mbps [241]. Based on this assessment, TRAPS can certainly

meet this requirement.

Salt Rotation Overhead

TRAPS security depends in large part on (a) name unpredictability and (b) name salt rotation

frequency. Let PN be the set of names owned or otherwise published by producer P . Then,

206

for each name N ∈ PN, P must compute F (N). If T is the average cost of computing F (N)

for any name N ∈ PN, the fastest rate at which P could update is once every T ·|N|. Assuming

P wanted to rotate its salt every day and that it was using an obfuscation function with

T ≈ 0.5s, the maximum size of N is roughly 172, 000. (This assumes P spends the entire

day pre-computing the next day’s names with on a freshly chosen salt, which is clearly

undesirable.)

207

Chapter 6

Availability

Denial of Service (DoS) attacks are a major threat to any network architecture. They range

in severity from slowing down a single node in the network to taking an entire subnet offline.

DoS attacks on today’s IP-based networks include bandwidth depletion via floods [18], DNS

cache poisoning [292], black-holing and prefix hijacking [208], and reflection attacks [299],

among others. As [136] suggests, CCN features curtail many of these attacks by design:

• Flow symmetry prevents reflection attacks [136].

• Interest aggregation and content caching mitigate bandwidth depletion attacks [318].

• Verified content authenticity mitigates prefix hijacking attacks [150].

This resilience comes at significant cost, as described at length by Aamir et al. [21]. In

standard CCN, flow symmetry, specifically, requires per-packet state stored at routers.

Consequently, this state can be easily abused via so-called Interest Flooding (IF) attacks

[24, 136, 85, 30]. In one IF attack, a malicious consumer (or a distributed botnet) issues

nonsensical interests1 so as to overwhelm targeted routers and saturate their PITs. Since

1For example, an interest with a name reflecting a valid producer’s prefix, with a random number as its
last segment.

208

such interests will not be satisfied and yield a NACK, PIT resources remain occupied longer

than those for legitimate traffic.

According to Carofiglio et al. [75], PIT entry counts can range from fewer than 100 for

edge routers with a small number of per-namespace flows, to well over 106 in network cores

as upstream paths become congested.2 Guimarães et al. [159] suggested that even small

ratios of malicious interests may result in a non-negligible number of legitimate interests

being dropped. PIT timeout values play a clear role in this packet loss. Moreover, malicious

consumers and producers can cooperate to target specific routers and exploit timeout values.

Numerous attempts to address IF attacks are proposed in the literature. Gasti et al. [136]

surveyed a number of possible approaches, including local router statistic collection to drive

pushback and per-interface rate limiting. Compagno et al. [85] extended these ideas with

Poseidon, a router-local mechanism to implement rate limiting based on per-face fairness

metrics. The approach targets interests for existing and non-existing content, the latter

of which being particularly challenging to suppress. Similar techniques were explored by

Wang et al. [322]. Rather than use fairness metrics, they use fuzzy logic filters based on

PIT occupancy and entry expiration rates to trigger downstream pushback mechanisms.

Routers are assumed to cooperate. Another attempt to classify interest flooding beyond

fairness metrics was studied by Nguyen et al. [242]. They developed a flooding detector

that exploits the divergence of upstream interest and downstream content flows when under

attack. The threshold for their detector factors in a desired false probability value.

Kondo et al. [191] scanned URLs in use on today’s Internet and use the results to develop

a set of heuristics and statistics to detect anomalous names that do not resemble legitimate

URLs. Firewalls used these rules to filter malicious or fake interests. This technique assumes

names will have human-readable segments and patterns, which is not true of encrypted or

otherwise obfuscated names that are not necessarily malicious. Salah et al. [275, 274] propose

2A similar model was studied by Wang et al. [319].

209

an IF countermeasure that relies on router cooperation. Special routers, called monitors,

signal to a central domain (or AS) controller the state of their PIT entries. Collected state is

used to determine if any router is under attack. This design depends on monitor distribution

and router-to-controller signaling rates.

Dai et al. [93] proposed an interest traceback mechanism to link floods to their sources.

Equipped with this knowledge, routers can take preventative steps to sever links to the

source. Li et al. [202] proposed using puzzles to throttle consumer interests. In their

design, routers may force downstream hops to solve puzzles (with proofs-of-work) as a form

of payment before forwarding packets.

Alternative PIT implementations were studied by Virgilio et al. [314]. Experiments suggest

that PITs which store full names, hashes of names, BF-based sets of names are all vul-

nerable to DoS attacks and perform equally well under normal operating conditions. (One

additional problem is that BF-based PITs necessarily introduce false positives.) Almirshari

et al. [31] proposed a technique to “piggyback” interest and content objects to enable high

throughput bidirectional communication in NDN and remove unneeded PIT state for half of

the traffic. However, as it does not remove PITs entirely, it is still susceptible to IF attacks.

Dai et al. [92] studied PIT extensions to support modern applications such as streaming

services and online gaming. They proposed creating long-lived PIT entries for bidirectional

communication between clients and servers. This long-lived state makes IF attacks easier to

conduct.

Techniques to outright replace the PIT have also been proposed. Tsilopoulos et al. [308]

devised a “semi-stateful” solution wherein packets are marked (with BFs) with forwarding

information. This approach shifts PIT state to packets themselves and creates additional net-

work communication and control overhead. Wang et al. [321] proposed related architecture

changes wherein routers selectively move per-router state to per-packet state for suspicious

interests. They introduced a secondary data structure that stores malicious prefixes under

210

attack. If an interest arrives with a matching malicious prefix, reverse-path forwarding state

is stored in the packet, not the PIT, before forwarding. Upstream routers must honor this

state and use it to forward responses downstream. Mirzazad-Barijough et al. [132] proposed

a MPLS-like stateless variant for CCN. Their approach addresses IF though still enforces

path symmetry and does not generally aid applications that require bidirectional communica-

tion. Garcia et al. [131, 132] introduced CCN-GRAM (Gathering of Routes for Anonymous

Messenger), which is a type of semi-stateless CCN architecture that uses “anonymous data-

grams” in lieu of normal CCN packets. CCN-GRAM replaces per-interest state with source

and destination “addresses,” where a source address is an anonymous identifier with local

meaning and a destination address is a content name as per usual. CCN-GRAM achieves

similar functionality as stateful CCN without router per-packet state. This means it inherits

problems of forced path symmetry, which can be problematic for mobility (a growing use

case). In Section 6.1, we describe a similar stateless (or PIT-less) architecture in which PIT

state is replaced by backwards-routable names, or RBNs. These RBNs permit routers to

forward the resulting content based on FIB entries, rather than PIT entries. The technique

melds with standard CCN at network edges.

PIT are not the only vulnerable router data structures. Yuan et al. [340] studied forwarding

engine performance to determine pain points for forwarding based on CCN names at line

rate. They concluded that the primary problems were (1) exact string matching with fast

updates, (2) longest prefix matching for variable-length and unbounded names, and (3) large-

scale flow maintenance. Thus, adversaries can exploit variable length names to attack FIBs

and caches.

Design and implementation of high-speed CCN forwarders are well studied in the literature

[336, 289, 290, 260, 129]. For example, Quan et al. [260] proposed an efficient name lookup

engine for CCN forwarders that exploits name variability. Specifically, Tree-Bitmaps [109]

and BFs are used together, in parallel, to look up a name using LPM. The proposed parallel

211

lookup algorithm computes BF hashes on one half of a name and performs exact match in

a Tree-Bitmap on the other half. So et al. [289?] also proposed an efficient forwarding

engine that uses a hash-based data structure for name LPM. The design uses SipHash for

its low cycles/byte performance and collision properties.

Perino et al. [250] proposed an alternative LPM implementation that does not use successive

lookups. Their approach decomposes the LPM problem into two subproblems: (1) finding

the longest length of a matching prefix using a BF and (2) a hash table lookup. High-quality

pre-computed hashes improve the efficacy (2) with negligible effect on (1). (Other BF-based

LPM solutions include [324] and [104, 293] for IP networks.) Fukushima et al. [129] built

on [250] and used BFs composed with a hash table lookup to reduce search space and hash

table size.

Song et al. [295] proposed a novel FIB design that uses name compression and Patricia tries

[301] to reduce FIBs footprints. Wang et al. [326] proposed a LPM implementation that

relies on a specific sorted order of names in FIBs. It builds on work of Wang et al. [323],

which proposes a special name segment encoding scheme.

All aforementioned designs focus on router implementation assuming a fixed packet for-

mat that carries application names. Ali et al. [151] examined requirements for application

naming schemes in CCN without discussion of how they can be efficiently conveyed in the

network layer. In Section 6.2, we propose the concept of network names that change PIT and

FIB inputs, rather than their implementation, to improve performance and harden against

dataplane attacks.

IF and more general DoS attacks are not unique to CCN. Alzahrani et al. [32, 34] showed

that DoS attacks are easy to implement in PURSUIT by adding noise to content zFilters.

(Recall that zFilters determine to which link(s) published content is sent, as determined

by Topology Managers.) Alzahrani et al. [32, 34] built on Rothenberg et al. [271] and

212

proposed to mitigate these problems by binding zFilters to ephemeral identifiers derived

from link interfaces, content itself, and key shared with topology managers. Each hop re-

computes expected zFilter values using content and a current shared key before performing

per-interface matches and making forwarding decisions. Alzahrani et al. [33] later specified a

key management scheme that allows each forwarder to verify zFilter authenticity. However,

per-hop verification can become another form of DoS.

IF and other attacks that focus on dataplane state exhaustion are only one of many network-

layer attacks. Wählisch et al. [315] surveyed a variety of attacks that exist on general

ICN architectures, including router-targeted computational and state exhaustion, targeted

depletion of shared bandwidth via interest exhaustion, as well as state decorrelation attacks,

e.g., via well-timed cache manipulation. (Technically, state decorrelation is more of a concern

to publish-subscribe networks, rather than request-based architectures such as CCN.) One

attack not considered centered on prefix hijacking. This attack injects fake content to limit

availability and induce DoS through expensive content verification.

Ghali et al. [142] proposed preliminary attempts to isolate and identity fake content in CCN

using popularity metrics. However, their technique is imperfect since it relies on honest

consumer feedback. Later, Ghali et al. [150] higlighted that content poisoning is reducible

to network-layer trust and, consequently, laid out mechanics that soon became KeyId and

ContentId in CCN. Providing one or both of these restrictions is necessary, though not always

sufficient, for preventing content poisoning attacks.3 Wong et al. [328] proposed a different

variant for publish-subscribe networks such as PURSUIT by publishing verification data,

such as certificates and public keys, separately from content in the data plane. Subscribers

can securely fetch and use verification data separately from actual content.

3Cache pollution [87, 176, 216, 248, 335, 177] is a related attack on availability wherein cooperating
consumers and producers populate caches with valid but useless (unwanted) content. The goal is to invalidate
the utility of network caches. However, as this fake content will never be requested by legitimate consumers,
it is only an attack on content availability and network performance. Mobility-First and XIA are also
susceptible to this attack.

213

In CCN and related architectures, content verification is not a mandatory precondition for

content forwarding. A router must only verify content before serving it from a cache, as

described in Section 3.5.1. A router which does not cache content therefore has no incentive

to verify content signatures. Moreover, a caching router may not verify and cache all content

if the content arrival rate is too high, even if in some cases it is feasible [58]. Even with

optimizations such as segmented caches and verification-on-cache-hit, as described by Kim

et al. [188], per-packet public key cryptography can be prohibitively expensive at high line

rates.

As an added complication, packet verification requires each byte to be processed by a router.

If a content object (or interest) is fragmented, routers may have to allocate a non-negligible

amount of memory to store and reassemble constituent fragments. NDN uses this hop-by-hop

fragmentation scheme by default [25]. Routers reassemble and verify content objects before

forwarding any individual fragments. Fake content can easily exploit this behavior as an

attack on routers. Ghali et al. [139, 140] proposed a secure cut-through fragmentation scheme

for CCN called FIGOA that allows routers to quickly forward individual fragments while

incrementally computing the parent packet’s cryptographic hash digest. Verification can

then be quickly checked once the final fragment is received, without reassembly. Mosko et al.

[230] slightly modified FIGOA to move content signatures and hash digests to leading packet

fragments. This allows routers to verify signatures immediately and continue forwarding

fragments, thereby amortizing the verification cost with fragment forwarding overhead.

Optional and inconsistent content verification permits on-path attackers to silently hijack

name prefixes in CCN. One way to avoid this is to proactively try and avoid malicious

routers during normal operation. Wu et al. [334] proposed using per-router reputations

to rank forwarding interfaces. Router reputation decreases exponentially as poisoned to

non-poisoned content ratios increase. Routers are punished, i.e., not forwarded interests,

as they forward more poisoned content. Determining upstream router reputation requires

214

mandatory content verification, which may be infeasible. DeBenedetto et al. [106] proposed

an alternative mechanism wherein consumers alert upstream routers to fake content, allowing

them to adjust their forwarding tables if necessary. However, as we discuss in Section 6.3,

this reactive approach is cumbersome and costly. In Section 6.3, we propose a lightweight

network-layer integrity checking mechanism that helps routers verify the integrity of a packet

as it flows through the network.

6.1 A Stateless Data Plane

In this section, we comprehensively assess the stateful forwarding plane of CCN with respect

to many of its claimed benefits, including support for reverse-path routing, infrastructure

security, flow and congestion control, and interest aggregation. We show that many benefits

are: (1) either unrealistic or infeasible in practice, (2) can be achieved by means other

than stateful forwarding, or (3) so marginal that their value simply does not justify their

overhead. We then present, in Sections 6.1.2 and 6.1.3, a new stateless architecture for CCN

based on Routable Backward Names (RBNs). This design can co-exist with the current CCN

architecture (with PITs) or replace it entirely. Our proposed stateless architecture is different

from that of Mirzazad-Barijough, et al. [132], where content is forwarded using MPLS-like

labels and not per-packet state. As we show in Section 6.1.1, [132] still assumes pull-based

communication as the preferred mechanism for all applications and enforces path symmetry

for interests and content objects. After discussing the design, Section 6.1.4 concludes with

experimental results which indicate that stateless CCN retains the essence and performance

characteristics of standard CCN while successfully avoiding pitfalls of per-interest packet

state.

215

6.1.1 Assessing the PIT

Currently, the PIT is a fundamental and mandatory component of the CCN forwarding plane.

As shown by Carofiglio et al. [75] and others, PIT load is dependent on router location,

namespace properties, and adversary displacement in the network. A PIT implementation

can be optimized, yet it will always be subject to unpredictable and untrustworthy network

conditions. Thus, aside from being unnecessary to support CCN-like communication, the

PIT raises more (serious) problems than it solves. We support this claim by systematically

analyzing the following alleged PIT benefits:

1. Reverse-path forwarding

2. Infrastructure security

3. Flow and congestion control

4. Interest collapsing

We then show that all these benefits are either false, unnecessary, or very meager at best.

Reverse-Path Forwarding

A key tenet of CCN is that content is never sent to a consumer who previously did not issue

an interest, i.e., does not have a pending interest, for this content. According to [172], since

interests contain no source addresses, PITs are needed:

“...to forward Content Objects from producers to consumers along the interest

reverse path by leaving per-hop state in each router...”

We disagree with this statement for two reasons. First, network path symmetry is not

guaranteed and should not be assumed. [174] demonstrated that route symmetry between

the same flow on the Internet is lower in the core than at the edges. Several tier-1 and tier-2

216

networks were studied and it was shown that, due to “hot-potato-routing,” flow asymmetry

exceeds 90% in the core. Thus, symmetric path routing in the core appears to directly

contradict today’s practices that promote and exploit path asymmetry for better traffic

distribution. Attempting to enforce symmetric data traversal appears to be a challenge from

an economic perspective.

Second, pull-based communication with symmetric paths is not well-suited for all applica-

tions. While appropriate for scalable content distribution applications4, it is substantially

different from modern TCP/IP applications and protocols which rely on interactive sessions

and bidirectional streams between endpoints. For instance, the WebSocket [118] protocol

uses full-duplex TCP streams for clients and servers that engage in real-time, bidirectional

communication. It is used by many popular interactive applications, such as multimedia

chat and multiplayer video games. Two-way communication is not limited to Web proto-

cols. Voice applications such as Skype [286] and peer-to-peer systems such as BitTorrent

[83] rely on two endpoints which both produce and consume data as part of the application.

Given the relative infancy of CCN and abundance of real-world applications that currently

do not fit CCN’s mold, it is difficult to argue that pull-based communication can satisfy

all application needs. Moreover, even today, some existing CCN applications abuse interest

messages to carry information from consumers to producers [71]. Other applications rely on

consumers and producers to send interests to each other as data mules. NDN-RTC, a recently

developed NDN video teleconference application, is one such example that supports such

bidirectional communication between peers [162]. (We use NDN and CCN interchangeably

here since both are equivalent in this context.)

Another emerging application design pattern is data transport via set synchronization. The

NDN ChronoSync protocol is a prime example of this pattern [348]. Each ChronoSync user

acts as both a producer and consumer. Consumers (members) issue long-standing interests

4Which some believe to be already well-served by today’s CDNs.

217

to a group (common namespace) about specific data to be synchronized; These interests

are routed to all members. When target data is changed by someone, this member satis-

fies previous interest(s) with a fingerprint of the data in a content object. Each member is

then responsible for requesting updated content to synchronize with the others. This pro-

tocol is built on the fundamental assumption that pull-based data transmission is the only

communication pattern.

Based on the trends of current TCP/IP applications and proposed design strategies for

CCN-based protocols and applications, it seems clear that bidirectional communication is

here to stay. For it to work, router FIBs need to contain prefixes for all end-points – not just

producers. Therefore, all communicating parties need to obtain and use a routable prefix,

which effectively serves as an address. As a consequence, forwarding information stored in

a PIT becomes redundant and unnecessary.

Infrastructure Security

Gasti et al. [136] showed how CCN (in the context of NDN) prevents many modern DoS

attacks, including: bandwidth depletion, DNS cache poisoning, black-holing and prefix hi-

jacking, as well as reflection attacks. Out of all attacks considered, the PIT is needed only

to prevent reflection attacks [299]. Since content is forwarded based on PIT entries, such

attacks are impossible in CCN. However, forwarding content via the PIT is not the only way

to prevent reflection attacks. If packets have a source address, the ingress filtering technique

in [117], whereby ISPs filter packets based on source addresses, would work equally well.

Moreover, despite its resilience to reflection attacks, CCN is susceptible to IF attacks [136].

Although several attempts to detect, mitigate, and prevent these attacks have been made

[314, 85, 320, 24, 243, 242, 302], each of them is effective against only a very näıve or weak

attacker. Thus, IF attacks remain a daunting open problem with no solution in sight barring

network architecture changes.

218

Flow and Congestion Control

[336] presented the first thorough argument in support of a stateful forwarding plane in

the context of NDN. (Due to their near-identical features, the same applies to CCN.) The

PIT can be used to record RTTs for interest and content exchanges, which, in turn, is

useful for making dynamic forwarding decisions. For instance, if the RTT for content in a

given namespace on a particular link becomes too high, that link might be congested and

alternatives should be explored. This type of in-network congestion and flow control has been

studied further in [210, 337, 272, 273, 73]. For instance, [73] propose a joint hop-by-hop (i.e.,

in-network) and receiver-based control protocol that relies on PIT-based RTT measurements

for flows. In-network flow control allows routers to control flow closer to congested links, as

opposed to performing the same by receivers.

However, according to [325], flow differentiation is a difficult challenge. One approach to

“interest shaping” is by controlling the flow of data on upstream and downstream links

independently of flows. This does not require any information from the PIT. Instead, it relies

on knowledge of average interest and content size, link bandwidth, and interest arrival rates

(or demand). Similar to [273], it also relies on receiver-driven flow control via an Additive-

Increase-Multiplicative-Decrease window. Ren et al. [264] proposed another example of a

receiver-driven flow control protocol for CCN. In contrast, Mahdian et al. [210] proposed

a rate-based congestion control protocol that exploits the multi-path and stateful nature

of CCN. Given these results, it is not clear where congestion control logic is most useful.

Nevertheless, recent trends in the CCN research community show that pushing stateful

control protocols towards receivers, rather than to network nodes, is a viable and attractive

approach.

219

Utility of Interest Collapsing

Dabirmoghaddam et al. [91] were the first to accurately model interest collapsing in CCN

and NDN. The results indicate that collapsing occurs very little, i.e., with probability rarely

exceeding 0.15, at the edge of the network (where content will be cached) for popular content

classes. In this section, we perform our own independent analysis and confirm these results.

Interest collapsing is only performed on interests arriving at routers during a small window

of time ∆. Due to the increase of network data rates and the decrease of end-to-end delays

provided by in-network caching, the value of ∆ is small, e.g., on order of tens of milliseconds.

Therefore, we believe that the effect of interest collapsing does not play a crucial role in the

performance of CCN.

To support this claim, we model the probability of interest collapsing occurring in the first

hop router R. The reason for choosing the first router is that the benefits of interest col-

lapsing are closest to the consumer(s). This is because collapsing two similar interests at

the consumer-facing router reduces bandwidth usage more than if the collapsing happened

closer to the producer. We assume that content popularity follows a Zipf distribution with

classes k = 1, . . . , K and average number of segments σk.
5 Let each class arrival rate λk at

R be modeled as a Poisson process. The event of interest collapsing at R for content class k

is denoted as CollRint(k). The probability of this event occurring is given as [74]:

Pr
[
CollRint(k)

]
=

1− e−∆λk

1− (1− 1/σk)e−∆λk
(6.1)

5Large content is typically split into smaller segments.

220

Theorem 6.1. Assuming in-network routing is only enabled at edge routers [133], the in-

terest collapsing probability at consumer-facing router R is

Pr
[
CollRint(k)

]
=
(
1− pRk

)1−
(

L∏
i=1

e
− li
αi

) 2λk
c

 (6.2)

for L links between R and producer P , c = 3×108m/s the speed of light, li the length of link i,

constant αi that depends on the characteristic of the material of which link i is manufactured,

and pRk the cache hit probability of a class k content at R.

Proof. We are only interested in modeling interest collapsing for individual content objects,

thus we set content size σk = 1 segment. Therefore, Equation 6.1 can be written as follows.

Pr
[
CollRint(k)

]
= 1− e−∆λk

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Propagation delay ∆ [msec]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

In
te

re
st

 c
ol

la
ps

in
g

pr
ob

ab
ili

ty

λ1 = 40.0

λ2 = 20.0

λ3 = 10.0

λ4 = 5.0

(a) Cache hit rates for all classes of content is 0
(R’s cache is disabled).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Propagation delay ∆

0.00

0.01

0.02

0.03

0.04

0.05

In
te

re
st

 c
ol

la
ps

in
g

pr
ob

ab
ili

ty

λ1 = 40.0, pR1 = 0.8
λ2 = 20.0, pR2 = 0.4
λ3 = 10.0, pR3 = 0.2
λ4 = 5.0, pR4 = 0.1

(b) Cache hit rates differ for different classes of
content.

Figure 6.1: Interest collapsing probability at R

221

However, taking content caching at R into consideration, the previous equation can be

rewritten as:

Pr
[
CollRint(k)

]
=
(
1− pRk

) (
1− e−∆λk

)
(6.3)

where
(
1− pRk

)
represents cache miss probability. In other words, if the requested content is

cached at R, the latter satisfies corresponding interests from its local cache without creating

PIT entries. Therefore, interest collapsing does not occur.

We now redefine ∆ as a function of the propagation delays incurred by each link on the path

R ↔ P ↔ R (i.e., the RTT between R and P .) Note that δi is the propagation delay of

the link connecting ri−1 and ri, where r0 = R and rL = P . Moreover, pik represents cache

hit probability at router ri and if interests generate a cache hit at ri, then they are not

propagated further.

∆ = 2 ·
i∗∑
i=1

(
δi
(
1− pik

))
= 2 ·

i∗∑
i=1

(
li
αic

(
1− pik

))

where αic represents the propagation speed of link i, and 1 < i∗ < L is the index of router

ri∗ where a cache hit first occurs.

However, assuming that in-network caching only happens at the network edge and that δL

is negligible compared to δ1 + δ2 + · · ·+ δL−1 (we neglect the effect of caching at rL−1), the

cache hit probability in all routers between R and P (not including R) is equal to 0, and

∆ = 2 ·
L∑
i=1

li
αic

222

Therefore,

Pr
[
CollRint(k)

]
=
(
1− pRk

)(
1− e−

(
2·
∑L
i=1

li
αic

)
·λk
)

=
(
1− pRk

)(
1−

(
e
−
∑L
i=1

li
αi

) 2λk
c

)

=
(
1− pRk

)1−
(

L∏
i=1

e
− li
αi

) 2λk
c

This concludes the proof.

We analytically analyze Theorem 6.1 in the following setup. For simplicity we use Equation

6.3 for various content arrival rates and propagation delay values between R and P . Since

content popularity follows a Zipf distribution, content arrival rate for class k + 1 is half

of that for class k, i.e., λk+1 = λk/2. To illustrate the largest possible interest collapsing

probability, we assume that requested content (even if popular) is not cached at R.6 Figure

6.1a shows the collapsing probability of four classes of content k = [1, 4]. The reason why

the graph only considers propagation delay up to 4 milliseconds is because it is shown in

[74] that the virtual RTT (VRTT), which is RTT taken into consideration the existence of

caches, for content class k = 4 is around 4 milliseconds. We notice that Pr
[
CollRint(k)

]
≤ 0.15

for the most popular content (k = 1). However, in a more realistic setup where R’s cache

is taken into consideration, the highest interest collapsing probability is less than 0.05 for

content class k = 2, see Figure 6.1b. Based on these low probabilities, we conclude that

interest collapsing becomes almost useless in practice when caching is present at the edge.

6Recall that caching content eliminate the possibility of interest collapsing.

223

6.1.2 Stateless CCN using Backwards Routable Names

As evidenced above, PITs are unnecessary to provide many of their offered services and

simultaneously come at the price of serious infrastructure security problems that have not

been addressed. To this end, we introduce a modified CCN architecture without PITs, called

stateless CCN.

The main idea behind our stateless CCN design is simple: an interest now includes a new

field called Backwards Routable Name (BRN): a routable prefix, similar to an IP source

address. BRNs exist in a global namespace much like an IPv6 address. A BRN indicates

where the corresponding content should be delivered. The corresponding content carries the

BRN as its routable name towards the origin of the interest. Thus, with properly configured

FIB entries, content is correctly delivered to the origin of the interest.7 This modification

to the CCN architecture is clearly inspired by IP – all packets (interest and content) are

forwarded based on addresses they carry and not on network state. However, as we show

below, this does not violate CCN’s core value of named data being moved through, and

stored in, the network.

To illustrate BRN-based forwarding, consider a scenario where a consumer Cr with topolog-

ical name /edu/uci/ics/gateway/bob (NCr) requests content from a producer P with the

name /bbc/news/today (Nbbc). In this case, Cr is the origin of the interest. (As we will

show later, it is not mandatory for a consumer to be an origin.) Let I(N,SN) be an interest

with the routable name N = Nbbc and Supporting Name SN = NCr. Also, let C(N,SN)

be the corresponding content object that matches I(N,SN). In this example, assume that

C(N,SN) is not cached anywhere.

1. Cr advertises its name NCr and the routing protocol propagates this information ac-

cordingly.

7This requires origins to publicly advertise their BRN prefixes and participate in routing.

224

2. Cr issues I(Nbbc, NCr).

3. The network forwards I(Nbbc, NCr) towards P according to router FIB entries. At every

hop, each router may optionally modify NCr if needed to preserve routing correctness

and consumer privacy (see Section 6.1.3).

4. Once P receives I(Nbbc, NCr) it replies with C(Nbbc, NCr).

5. Similarly to Step 3, the network forwards C(Nbbc, NCr) back to Cr, based on NCr,

using the same interest forwarding strategy.

Several modifications need to be made to the existing CCN architecture and protocol to

enable this communication. At a minimum, interest and content object messages should

carry two names: one of the requested content and the other of the origin. Contrary to

IP, these two names do not correspond to a source and destination address. The origin’s

name serves as a topological address to which the content object should be sent, whereas

the data’s name serves as a topology-agnostic locator and identifier for the data. Therefore,

the addition of this name does not violate the core CCN value that data names are distinct

and independent of network locale.

We suggest modifying both interest and content top-level messages to include a new field

called SupportingName (SN). This field contains the BRN of the interest origin. In the above

example, interests and content objects would contain /cnn/news/today and /edu/uci/ics/

bob as N and SN , respectively. Note that content object signatures can be generated in

advance by omitting the content’s SN field since this is only used for routing purposes. The

resulting packet formats are shown in Figure 6.2 in ABNF format. ValidationAlg and

ValidationPayload elements are defined in [225].

225

Message := MessageType PacketName [Payload] [Validation]

MessageType := Interest | ContentObject | ...

PacketName := Name SupportingName

Name := CCNx Name

SupportingName := CCNx Name

Payload := OCTET+

Validation := ValidationAlg ValidationPayload

Figure 6.2: Modified stateless packet format

We stress that a content might not follow the reverse path of the proceeding interest due

to routing table configurations. In fact, we anticipate that origins might structure BRNs to

control the degree of path asymmetry between interest and content messages.

Modified interest and content formats coupled with removing the PIT simplifies fast-path

processing. Algorithms 21 and 22 show how a router would process interest and content

messages. CS-Lookup represents a CS lookup operation based on N (content name). For

clarity’s sake, we omit content verification details in all algorithms. Interest forwarding

involves a CS miss and FIB lookup whereas content object forwarding involves a CS update

and FIB lookup. This is significantly simplified when compared to the traditional forwarding

logic wherein interest forwarding requires a CS and PIT miss, PIT insertion, and FIB lookup

whereas content object forwarding involves a CS miss, PIT hit and deletion, and CS update.

Algorithm 21 Stateless interest processing

1: Input: Interest I(N,SN], arrival interface Fi, CS, FIB
2: C = CS-Lookup(CS, N)
3: if C 6= nil then
4: (Optionally) Modify SN to add privacy.
5: Forward C to Fi
6: else
7: prefix, Fo = FIB.Lookup(N)
8: Forward I(N,SN] to Fo based on local strategy

226

Algorithm 22 Stateless content object processing

1: Input: Content Object C(N,SN], CS, FIB
2: Cache C(N,SN] with N as the key
3: Fo = FIB.Lookup(SN)
4: Forward C(N,SN] to Fo based on local strategy

6.1.3 Architecture Evaluation

Despite significant research progress over the past five years, the PIT no longer seems to be

a practical solution for content object forwarding in CCN. As discussed earlier, router PITs

are prone to DoS (specifically IF) attacks. They also store information already available from

FIBs (consumer routable prefixes) and enforce unnatural path symmetry in an increasingly

asymmetric Internet. (The latter problems remain for the stateless CCN variant of Mirzazad-

Barijough et al. [132].) The proposed stateless CCN variant mitigates these problems by

specifying the use of source and destination prefixes. To support our claims, we compare the

stateful and stateless CCN architectures with respect to aforementioned features. We then

discuss both advantages and disadvantages of stateless CCN.

Revisiting the PIT Benefits

Reverse-Path Routing. The proposed stateless CCN scheme requires FIBs to be updated

to accommodate BRN prefixes advertised by consumers. It might seem, at first, that this

would lead to a tremendous increase in FIB size. However, recall that CCN interest (and

now, content) forwarding is based on LPM. In stateless CCN, consumers announce their

BRNs only to their first-hop routers (e.g., an access point), which, in turn, combines all

its consumers’ BRNs and announces an aggregate prefix to neighboring routers, similar to

the Border Gateway Protocol (BGP) route-aggregation feature [296]. We will revisit this

aggregation feature later.

227

Also, path asymmetry between interest and content messages in stateless CCN is more

compliant with networking and routing practices of today’s Internet. As argued in Section

6.1.1, ISPs are likely to adopt an architecture that agrees with their present business model.

Forwarding Overhead. Stateful CCN dictates that, when processing an interest, a router

should, in the worst case: (1) attempt to satisfy the interest from its CS, (2) create or

modify a PIT entry for the interest, and (3) perform a FIB lookup. Meanwhile, stateless

CCN eliminates (2), which reduces the number of operations needed to forward interests.

To better understand this reduction, consider the operations needed to forward packets in

stateful CCN. For interests, both the PIT and CS must be indexed (separately or together

as in [289]) using full interest names. This costs a single lookup plus an additional write

(to create a new, or update an existing, PIT entry) if the matching content is not cached.

In stateless CCN, the PIT update procedure is removed, thereby improving the efficiency of

the forwarding process.

To give an example of the overhead that is saved for this operation, we profiled the PIT

lookup procedure for the PARC Metis forwarder [12]. Using a random set of URIs generated

from the Cisco data set [11], we added and removed entries in the PIT at varying rates to

match a desired steady state. We analyzed the PIT performance when its average number of

entries is in the set {10, 100, 200, 300, 400}. The resulting lookup and insertion time is shown

in Figure 6.3. For this implementation, running on a workstation with a 2.8 GHz Intel Core

i7 CPU and 16GB of 1600 MHz DDR3 RAM running Ubuntu 14.04, we see that removing

the PIT saves an average of approximately 4.5µs across all names in input data set.

Now consider content objects: forwarding requires a single PIT lookup, PIT deletion or

eviction, and a CS write operation. In stateless CCN, the PIT index and update procedures

are replaced with a FIB lookup procedure. Contrary to interest forwarding, stateless CCN

content object forwarding should (in theory) be more expensive than that of stateful CCN.

Using the data from [289], which presents a highly optimized software forwarder for NDN

228

Figure 6.3: Average PIT lookup and insertion overhead

(with the same fundamental forwarding rules as stateful CCN), interests are forwarded at an

average rate of 1500 cycles/packet whereas content objects are forwarded at an average rate

of 550 cycles/packet. Interest processing requires: CS, PIT and FIB lookups as well as a PIT

write operation to create or update an entry. Conversely, content processing requires PIT

lookup and write (to remove an entry) operations.8 The additional FIB lookup in interest

processing is responsible for the extra overhead required for forwarding interests. Note that

a FIB lookup is much slower than a PIT lookup. The reason is because the former is based

on longest-prefix matching and actually consists of multiple lookups for different prefixes.

This means that, in stateless CCN, replacing a PIT lookup while processing content with

a FIB lookup should increase content forwarding overhead, but it would not exceed that of

interest forwarding overhead in the standard stateful CCN design.

8CS processing also includes a CS write operation to cache the received content. However, it can be done
in parallel and not on the fast path.

229

Flow and Congestion Control. Current receiver driven flow and congestion control

algorithms are unaffected in stateless CCN. The only difference is that now routers are unable

to compute the RTT for a given interest-content exchange. This prevents fine-grained flow

control taking place close to congested links in the network. However, given that many flow

control algorithms operate at the edge and do not rely on RTTs collected by routers, this is

a tolerable loss.

Content Caching

As mentioned earlier, using BRNs for content routing does not preserve path symmetry. In

fact, it encourages path asymmetry. Consequently, content might be cached along a different

path than the interest originally traversed. It might seem that adjacent (or nearby) origins

for the same content would therefore not benefit from in-network caching. We argue that

this is not so. Due to their high processing rates, core routers will most likely not cache

content. Meanwhile, consumer-facing routers would handle much less traffic and are thus

more likely to cache content. In fact, caching has been shown to be most cost effective at the

edges [133], e.g., at tier-3 ISP level. Since nearby consumers share the same edge router, they

will all benefit from caching popular content in that router. This observation is supported

by the results obtained in [174], wherein it is shown that path symmetry is highest at the

edges of the network.

Figure 6.4 shows an example of caching in stateless CCN. The topology has 4 autonomous

systems (ASes). AS1 and AS4 are stubs representing tier-3 ISPs, while AS2 and AS3 are

transits representing tier-1 ISPs.9 Interests issued by Cr are forwarded towards P along

the dotted (red) path, and content is forwarded back to Cr along the dashed (blue) path.

Assuming that caching only occurs near the edges, content sent from P to Cr gets cached in

9We ignore tier-2 ISPs for simplicity.

230

Figure 6.4: Caching in stateless CCN

AS4. Consequently, interests for the same content issued by other consumers in AS4 would

be satisfied from AS4 cache(s).

Infrastructure Security

We now discuss both beneficial and problematic infrastructure security issues in stateless

CCN.

FIB Explosion. Stateless CCN necessitates that FIBs contain entries for origin and pro-

ducer prefixes. Scalable name-based routing is still a topic of research for CCN and related

architectures. Aggregation (as described later in this Section) helps reduce the number of

entries in a FIB if those entries are topological; it does not offer much help for producer

231

prefixes which are, in theory, agnostic to topological information [277]. Fortunately, since

BRNs are necessarily topological, they can be aggregated similar to the way in which IPv4

addresses are aggregated behind a NAT.

Interest Flooding. Stateless CCN mitigates this attack by eliminating its root cause – the

PIT. Without per-request state in routers, this attack vector is removed. By and large, this

is the primary benefit of stateless CCN.

Reflection Attacks. Interest and content path symmetry in CCN prevents reflection at-

tacks. However, in stateless CCN, BRNs serve as a de facto source address in interest, and

destination in content, messages. Thus, reflection attacks re-appear. Fortunately, the ingress

filtering technique described in [117] can mitigate them.

Cache and Content Poisoning. Content authentication in stateless CCN is identical

to that in the stateful CCN architecture. It is done by producers signing content objects

or using Self-Cerftifying Names (SCNs) [48]. Regardless of the method, all content must be

verified by consumers. However, verification is not mandatory for routers, for several reasons;

see [150] for more details. Lack of in-network content verification opens the door for content

poisoning attacks [142]. Moreover, due to possible path asymmetry in BRN-based content

forwarding, content poisoning countermeasures that work in the current CCN architecture

do not apply anymore.

The PIT enables a router to apply the so-called Interest-Key Binding (IKB) rule [150],

whereby consumers and producers collaborate to provide routers with enough (minimal)

trust information to perform content verification. This information is currently stored in the

PIT. However, as mentioned above, path asymmetry renders the IKB impractical for the

initial data request. In stateless CCN, a router might receive (unsolicited) content without

prior interest traversing the same path. If such content is returned on a path different from

the original interest, routers cannot trust any information it carries. However, this does not

232

prevent a router from opportunistically caching content it forwards. In doing so, the router

can apply the IKB rule to subsequent requests for the same cached data without forwarding

the interest upstream. (The difference here is that, in stateful CCN, the IKB rule can be

applied to verify content before it is inserted into the cache, whereas now it must be applied

once, and only once, the first cache hit occurs.)

Origin Privacy. Lack of source addresses in stateful CCN enables a degree of consumer

privacy. If origins are consumers, then BRNs in stateless CCN negate this benefit much in the

same way that global IPv6 addresses harm user privacy [236]. (However, as we will discuss,

in an ideal deployment of stateless CCN, origins would not be consumers.) To mitigate this

problem, a router R can assign a random identifier to each of its downstream consumers to

be used as part of their BRN and could overwrite the BRN in all ingress interests based on

this pseudonym (in line 4 of Algorithm 21). For example, instead of including an BRN as

/edu/uci/ics/consmerA, the gateway could set the BRN as /edu/uci/ics/r, where r is

a random string that is rotated on a regular basis. The procedure to modify a BRN based

on the arrival interface at a router is detailed in Algorithm 23. One important benefit of

this strategy is that r can be rotated at random and independent of other routers so that

consumers BRNs do not appear fixed upstream, thus mitigating interest linkability [149].

Algorithm 23 Stateless BRN obfuscation

1: Input: SN , arrival interface Fi, FIB, r
2: (prefix,Fd) := FIB.Lookup(SN)
3: if Fd = Fi then
4: index := |prefix|
5: SNindex = H(SNindex||r)
6: Return SNindex

Deployment Issues

Stateless CCN is an alternative to the current stateful CCN. They need not replace one

another. In fact, as we have designed it, they can co-exist. Consider the following scenarios:

233

1. Cr includes a BRN (SN) in an interest and upstream routers forward it as necessary.

Stateful routers create PIT entries and stateless routers do not. In both cases, the

interest is forwarded according to the FIB using content name N . Upon receipt of a

content message, a stateful router uses its PIT to forward the content downstream,

while a stateless router does that using the FIB and SN . In this case, stateful for-

warders simply ignore the SN fields in both interests and content objects. This makes

the proposed stateless CCN backwards compatible with the current CCN architecture.

2. Cr issues an interest as per current CCN rules. If a stateless router receives such an

interest, it generates a NACK indicating that the interest cannot be forwarded further.

To handle this NACK, some downstream node must provide a BRN for the interest

and re-forward it as needed. This node can be the consumer or an AS gateway, i.e., a

router that can forward packets to and from other ASes, acting as the origin.

Any node that satisfies an interest must honor its version (stateless or stateful) when pro-

ducing a response. For example, if a producer (or a caching router) receives an interest

with an BRN, it must reply according to stateless CCN by keeping both N and SN in the

corresponding content.

We envision a hybrid approach where stateless CCN is deployed at the network core and

stateful CCN at the edge. This aligns well with the CCN edge-caching strategy [133] and

current path asymmetry in the Internet’s core [174]. Edge routers in consumer-facing ASes

will possess both caches and PITs to aid with content verification. When consumers issue in-

terests, they first traverse through stateful CCN routers in a consumer-facing AS. When they

leave this AS, the gateway, acting as the interest origin, supplies a BRN before forwarding

upstream. Such interests will not induce any PIT state at the network core.

This hybrid approach has several powerful advantages. First, consider the benefits of the

hybrid deployment with respect to congestion control and mobility. If stateful CCN is de-

ployed near the edge, then fine-grained congestion information can be collected and conveyed

234

to consumers to adjust their transport protocol state accordingly. Moreover, as PITS are

deployed in stateful CCN near the edge, where mobility events take place, existing proposals

to handle mobility such as the trace-in-PIT proposal of Zhang et al. [345] can be used.

Second, it provides a native IF attack recovery mechanism. If R implements a PIT but

does not have enough resources to create a new entry for an interest, R can respond with

a NACK similar to what is described above. Consumers, then, issue interests according

to stateless CCN guidelines. The disadvantage of this approach as an effective IF attack

countermeasure is that (1) it is reactive, so it can only be used after the attack occurs, and

(2) it incurs an additional end-to-end latency since consumers (or downstream routers) need

to reissue stateless CCN interests. Third, it allows forwarder state to scale where it scales

best: at the edge. IF attacks are a problem specifically because the state does not scale well

throughout the entire network. However, in smaller subnets, this state can be much better

managed without falling victim to a DoS attack.

We also note that interests can cross stateless and stateful network boundaries with ease. If

an interest travels from a stateful to a stateless network, the gateway must supply a BRN

before forwarding the interest. The gateway is then considered the origin of the interest.

Similarly, if an stateless interest arrives at a stateful gateway, the latter must store the

BRN (in the SN field) in the corresponding PIT entry and subsequently remove it from the

interest. This is necessary if the interest will cross, multiple times, across a stateful and

stateless boundary.

6.1.4 Performance Assessment

We now evaluate performance of the stateless CCN in relation to stateful CCN. The key

metric we use is the degree to which forwarding overhead is affected by stateless routing. To

do this, we modified the ndnSIM 2.1 simulator [215] to support the stateless CCN architecture

235

(a) Processing overhead for DFN topology with 160 con-
sumers and routers with caches.

(b) Forwarding overhead for DFN topology with 160
consumers and routers without caches.

(c) Processing overhead for AT&T topology with 160
consumers and routers with caches.

(d) Forwarding overhead for AT&T topology with 160
consumers and routers without caches.

Figure 6.5: Forwarding overhead in stateful (red, blue) and stateless (green) CCN variants

proposed in Section 6.1.2. Specifically, we modified the NDN Forwarding Daemon (NFD)

[26] to forward interests and content objects based on names and BRNs.

We then simulated topologies based on Deutsches ForschungsNetz (DFN), the German Re-

search Network [5, 6] and AT&T core network (selected due to the size and diverse node

distribution). Each topology consists of 160 consumers10, a single producer connected to

10Each consumer node in the figures consists of 10 actual consumers.

236

Figure 6.6: Stateful and stateless content retrieval latency

one of the edge routers, and multiple routers (more than 30). Each consumer generates 10

interests per second, with a random suffix so as to avoid cache hits. This is done to force

interests to traverse the complete path to the producer and therefore maximize the amount

of processing that takes place in forwarders in the upstream and downstream paths. This

captures the worst-case scenario. In our experiments, neither the consumers nor the pro-

ducer are equipped with a cache. We do, however, assess the forwarding overhead differences

in the presence and absence of router caches.

The results of both experiments are shown in Figure 6.5. Figures 6.5b and 6.5d capture

the overhead imposed by packet forwarding regardless of caching effects. They show that

caching adds an overhead of approximately 20% to content processing; compare the blue

lines in Figures 6.5a and 6.5b, and Figures 6.5c and 6.5d. Moreover, in both topologies,

we observe that stateless packet forwarding imposes less overhead on routers compared to

stateful interest and content forwarding. This is due to the fact that stateless packet for-

237

warding does not require any PIT operations. The savings are quite significant, especially,

for cache-less core routers that might process packets at rates of 100Gbps and over.

Furthermore, the overall content retrieval latency improves with stateless forwarding. Figure

6.6 shows a comparison of the RTT performance for both forwarders in the DFN topology.

In this experiment, consumers always request unique content in order to avoid cache hits.11.

On average, the content retrieval latency improves by more than 50%. The improvement

reaches 77% for paths consisting of 6 hops. Although these results are dependent on the

forwarder implementation inside ndnSIM, the results align with intuition and our previous

experiment which show that stateless packet forwarding will, on average, improve due to the

absence of the PIT.12

To justify this claim, we revisit the argument of Section 6.1.3 which states that the forwarding

cost for stateless content objects will be closer to that of stateful interests due to the former’s

need for a FIB lookup instead of a PIT lookup. To estimate this overhead, consider the

forwarder in [289]. With a 64MB FIB and 2MB PIT, which can forward interests at a rate

of approximately 1.2 MP/s (million packets per second), 2.3 MP/s, 4.2 MP/s, and 5.9 MP/s

with 1, 2, 4, and 8 threads on a 2GHz core. In comparison, the content object forwarding

throughputs are approximately 1.4 MP/s, 6.1 MP/s, 12.1 MP/s, and 14.2 MP/s under the

same conditions. If the cost to forward content objects in the stateless variant is equal to

that of interests, then the forwarding rate degrades by 14.3%, 62.3%, 65.3%, and 117.9%,

respectively. These values capture the cost of the FIB lookup operation. However, given

that stateless routers are no longer susceptible to DoS attacks, we deem this cost justified.

11We do not take caching into consideration to eliminate any randomize effects (caused by different eviction
policies) on content retrieval latency.

12We say on average since interests are forwarder more quickly whereas content objects necessarily require
more time due to the FIB lookup in lieu of a PIT lookup.

238

6.2 Efficient and Opaque Network Names

CCN name-based forwarding has several undesirable consequences. First, it places un-

bounded computational burden on routers when forwarding interests. Existing high-speed

FIB designs use data structures that range from hash tables [289] to prefix tries [98, 68]. All

of them must account for variable length names and name segments. As discussed above, this

can be abused as a form of DoS attack on routers. Second, and perhaps more importantly,

the current design forces application layer semantics – through names – into the network.

In this section, we propose and evaluate a way to transparently decouple application-layer

and wire-encoded, or network-layer, names in CCN.13 Our approach yields network-layer

names, or simply network names, that are deterministically derived from application-layer

names, formatted according to the CCNx URI scheme [229]. This yields several benefits: (1)

less application data percolates into the network, (2) packets carry less variable-sized names

and name segments, and (3) forwarding logic is simplified and, consequently, improved. We

evaluate the impact of network names on CCN entities (consumers, producers, and routers)

and related protocols, such as routing. We also address security considerations related to

our network names. We then present a comprehensive analysis of their characteristics and

statistical properties to show they are functionally equivalent to standard application names.

We then present FIB performance results with and without network names. We find that

network names improve processing times across all data structure and algorithm variants

considered.

6.2.1 Data Plane Attacks

In this section we discuss data plane attacks on CCN routers. We argue that each dataplane

component – caches, PITs, and FIBs – are all vulnerable to trivial attacks due to their need,

13This is also discussed by Ghali et al. in [145].

239

by design, to process unbounded and untrusted data. In this section we use the following

notation. Let N be a name. We refer to the i-th segment of N as Ni. |N | is the number of

segments in N , whereas ||N || is the total size in bytes of N .

PIT and CS Attacks

The PIT and CS are vulnerable data structures since they are indexed using full interest

names. (Fortunately, PITs and caches can share an index, so full names need only be pro-

cessed once.) The standard approach to implementing a PIT and CS index is with a hash

table. This means an attacker can inflate interest names and force routers to hash an un-

bounded number of (name) bytes. Due to variable length names and interest fragmentation,

these names are allowed to exceed standard link MTUs, meaning that the ultimate bound

on name length is that which is imposed by the packet format – 64KB [225].

FIB Attacks

The FIB is indexed with a name N . The result of this query is a FIB entry, if one exists,

that has the longest matching prefix Np. Since segments are variable length, this can be

viewed as a string matching problem. Consider the following two ways this can be solved:

(1) Deterministic Finite Automatons (DFAs), e.g., a trie, or (2) hash tables (HTs). With

DFAs, computation is bounded by DFA size. For example, suppose a router R needs to

look up Nbad =/xx...xx/bar in a FIB with only entries for N1
p =/a/b/c and N2

p =/d/e/f.

Using a DFA, R only needs to examine the first byte Nbad to determine there is no matching

entry. In contrast, a router using a hash table FIB would need to compute the hash of Nbad
1

and then perform a table lookup before learning there is no match. Clearly, in this case,

DFAs are superior. However, this is not universally true.

240

Attacking FIBs requires exercising algorithm worst-case lookups. Let N c
max and N b

max be the

longest prefixes in terms of segments and bytes stored in a FIB, respectively, and let N∗ be an

input name. For a DFA-based FIB, worst-case lookup occurs when N∗ is a byte-wise prefix

of N b
max, i.e., it matches the longest byte-wise prefix accepted by the DFA. For a HT-based

FIB, worst-case lookup occurs when N∗ matches the first |N c
max| − 1 segments of N c

max. For

example, let N c
max = /foo/bar/baz. A worst case input name would then be a name of the

form N∗ = /foo/bar/<random>, where ¡random¿ is a random segment string. In this case,

all segments must be checked to determine whether there is a match. This maximizes the

number of bytes processed in the input name.

It is also possible to construct names that will exercise worst-case paths for both DFA- and

HT-based FIBs. Recall that applications are free to choose whichever name prefix they want

to register, regardless of their (topological) location. Name prefixes are not bound to topo-

logical locations, even though name prefixes are used as locators. Due to name aggregation,

a router is free to collapse a long name prefix down the shortest disambiguating prefix needed

to correctly route matching interests. This means that if two separate producers registered

prefixes N1 = /xx...xx-1/bar and N2 = /xx...xx-2/bar, both must be stored for dis-

ambiguation. If a router R then received an interest with name N = /xx...xx-3/bad, it

would need to process every byte of the first name segment to determine there is no match,

regardless of whether R uses a DFA- or HT-based FIB.

In short, FIB lookup complexity is a function of application-chosen names. And since ap-

plication names are not bound to any constraints other than the packet format, this is

exploitable.

241

6.2.2 Network Names

In the previous section we discussed why application names are a security concern for routers.

We now describe our network name construction that mitigates or alleviates several afore-

mentioned problems.

Let N = [N1, N2, . . . , Nk, S1, . . . , Sl] be a CCN application name as per [229] where k seg-

ments N1, ..., Nk are used for locating and identifying content and l segments S1, ..., Sl carry

application-specific information. We define segments containing application information as

any segment that is not of the type T NAMESEGMENT. This includes segments with the type:

T PAYLOADID, T VERSION, T CHUNK, and any other application-specific type to be defined.

For example, the name /edu/uci/ics/csdepart.html/T_VERSION=x02 can be represented

as the segment vector [edu, uci, ics, csdept.html, T VERSION = 0x02] with k = 4 and

l = 1, where the version segment is the only piece of application information. As previously

described, an interest carrying this name would have the following TLV encoding:

(T NAME

(T NAMESEGMENT “edu′′)

(T NAMESEGMENT “uci′′)

(T NAMESEGMENT “ics′′)

(T NAMESEGMENT “csdept′′)

(T VERSION 0x02)

)

We propose the use of network names by modifying this current format. In particular, each

network segment of the name is replaced by the fixed-size output of a mapping function T(·)

computed over all prior segments in the name. In other words, the i-th name segment is now

242

a fixed-size mapping computed over the first i segments. We specifically omit segments which

are not part of the name locator, i.e., only segments of type T NAMESEGMENT are included

in this computation. The reasons for this requirement are discussed in Section 6.2.3. The

actual mapping is computed as:

N̄1 = T(N1),

N̄2 = T(N1, N2),

. . . ,

N̄k = T(N1, . . . , Nk)

Using this representation, the network name N̄ for a given application name N is represented

as N̄ = [N̄1, N̄2, . . . , N̄k, S1, . . . , Sl]. The network name replaces the regular T NAME field in

CCN packets – it is not carried in a per-hop header or additional encapsulation layer. With

a suitable T(·), the relationship between N and N̄ forms a bijection between the application

and network namespaces so long as there are no collisions in T(·).

We also require the network name include an additional name fingerprint segment Np,

computed as the mapping of the full name N with all additional identifiers, i.e., Np =

T(N ||KID||CID), where KID and CID are KeyId and ContentId, respectively. As described in

Section 6.2.3, Np is used for PIT and CS lookup operations. As a consequence of removing

application names from packets, content digital signatures must be generated and verified

using Np. This is discussed later in Section 6.2.6. Algorithm 24 shows the deterministic

procedure for mapping an application name to a network name with Np.

Following the CCN TLV-encoding in [225] and assuming T(·) is SHA-256, the network name

and fingerprint can be represented as:

(T NAME

243

(T FINGERPRINT Np)

(T MAPPED SHA256 [N̄1, N̄2, N̄3, . . . , N̄i, . . . , N̄k])

(T TYPE S1)

. . .

(T TYPE Sl)

)

where T TYPE is replaced with the appropriate type for the corresponding segments.

We use the type T MAPPED SHA256 to denote a list of name segments transformed using

SHA-256. We make the mapping function explicit to allow for agility. The length of the

TLV-encoded segment (not shown in the above representation) is the total byte length of

all N̄ values. Given this length and output size of T(·), the number of N̄ values can be

computed. In other words, using a fixed-size output T(·), segments with type T MAPPED XXX

are of fixed size. Therefore, the type and length of each N̄ segment do not need to be

encoded.

Algorithm 24 Network name mapping

1: Input: N , T(·)
2: Output: N̄
3: N̄ = ∅
4: k :=Number of T NAMESEGMENT segments in N
5: for i = 1 to k do
6: seq := N1|| . . . ||Ni

7: N̄ = N̄ ∪ T(seq)

8: N̄ = N̄ ∪ [S1, . . . , Sl]
9: name := N1|| . . . ||Nl||S1|| . . . ||Sl

10: Np := T(name)
11: N̄ = Np ∪ N̄ return N̄

244

T(·) Function Criteria

In the proposed naming scheme, T(·) is used for two purposes:

1. Computing values in T MAPPED XXX segment of a network name.

2. Computing the name fingerprint Np used by routers for PIT and CS lookups and for

signature generation and verification.

Based on this, a sensible instantiation of T(·) is a hash function. This is because the FIB

lookup actually computes multiple hash values for all prefixes of a received interest name,

regardless of the underlying data structure used. Currently, most CCN routers use non-

cryptographic hash functions (i.e., those that are not collision-resistant) in the FIB for LPM

operations. Despite the non-negligible probability of collisions in such hash functions, routers

can resolve collisions since application names are explicitly included in interests. However,

in the proposed scheme, application names are replaced with fixed-size segments computed

using T(·). Thus, if a collision occurs, a router cannot resolve it, which might result in an

interest being forwarded on the wrong interface(s).

One way to cope is by carefully choosing names that do not cause collisions in T(·). However,

it is clearly infeasible for producers to be aware of all existing content names. Another

approach is to pick a cryptographic T(·) that offers collision-resistance. In practice, a well-

known cryptographic hash function, e.g., SHA-256, can be used to provide this property, in

addition to other cryptographic characteristics, such as one-wayness.

We also note that the output of the cryptographic hash function can be truncated to any

output size. We denote T(·) truncated to s most-significant bits as Ts(·). With Ts(·), the

corresponding network name segments will carry a type of the form T MAPPED XXX S where

S is digest size, e.g., T MAPPED XXX 64. Note that output truncation should only be used

when computing network name segments and not for generating Np in order to provide the

245

Table 6.1: CCN entity network name impact.

Entity
Impact

Consumer Increased online processing to compute network names (interests)
Producer Increased storage for reverse mapping (interests)

Increased off-line processing to compute network names (content)
Router Faster FIB lookup with pre-computed name prefix hashes (inter-

ests)
Faster PIT and cache lookups (interests)
Faster PIT lookups due to lack of name hashing (content)
Decreased storage requirement due to fixed-size Np, instead of
arbitrarily long names (content)

Table 6.2: CCN packet network name impact.

Packet Impact

Interest Longer name TLV encoding; based on T(·) size, see Section 6.2.4
Content Shorter (fixed-size) Np, instead of complete application name

least collision probability for PIT and cache lookups. In Section 6.2.4, we analyze collision

probabilities for Ts(·) for different s values.

In the rest of this section, we use the terms mapping function and hash function interchange-

ably when referring to T(·).

6.2.3 Network Name Integration and Ramifications

The proposed naming scheme has obvious implications for network entities as well as man-

agement and control functions, such as routing. In this section, we investigate the impact on

end-hosts (consumers and producers), network entities (routers and forwarders), and man-

agement functions (routing protocols). Results are summarized in Table 6.1. Implications

for CCN packets are summarized in Table 6.2. All of these are considered in detail in Section

6.2.4.

246

Name Translation at End-Hosts

End-hosts are the primary entities affected by the proposed naming scheme since they are

tasked with translating between application and network names. In practice, this mapping

would be performed by a component between the application and network layers.14

Consumer Mappings The impact on consumers is one name mapping per interest. How-

ever, since this operation is not on the fast-path, we expect no performance penalty for

consumers. To justify this claim, we assessed the overhead for translating all names in the

Cisco URI dataset [11] with the (unoptimized) PARC CCNx libraries [1]. This dataset con-

sists of 13, 549, 122 unique URIs. The average length of each URI is 57.4B, with a median

length of 52B, and a standard deviation of 33.182B. Across all URIs, the average number

of segments is 6.67 with a median length of 6, and standard deviation of 2.212 segments.

The average, minimum, and maximum time to compute the mapped version of each name

is 1, 029.279us, 3.812us, and 2, 474.567us, respectively. These numbers were generated on a

desktop machine with an Intel 2.8 GHz Core i7 processor.15 This is just over one millisecond

to map a single name, which is still less than most network I/O overhead. Given the average

size taken across all URIs, the average, minimum, and maximum cycles/byte throughput

for this mapping is 1, 577.688c/b, 1, 218.037c/b, and 3, 494.538c/b, respectively. This is far

from optimal given that the modern Intel Haswell chipsets can compute SHA-256 digests at

a throughput of roughly 8.59c/b [161]. Therefore, we conclude that, given a proper modern

implementation, the mapping process at the consumer incurs negligible overhead.

14Inverting this process is effortless at since the same stack component that is responsible for mapping N
into N̄ would remember this relationship and perform the inverse mapping when the content object response
returns. The amount of state required for this procedure is directly proportional to the amount of pending
interests at a consumer.

15The code is available at https://github.com/chris-wood/network-names.

247

https://github.com/chris-wood/network-names

Producer Inversions Network names have two implications for producers: (1) handling,

and responding to, incoming interests and (2) generating content. Since our goal is to

make network names transparent to applications, the producer must be able to determine

the original application name from a network name contained in an incoming interest.16

Therefore, the producer must maintain the reverse mapping from network to application

name prefixes that it published.17

For this to work, we assume that the producer knows all content prefixes under which it

publishes content. In other words, the network locator portion of the namespace for which

a particular producer is responsible must be well-defined. Furthermore, most producers

would need to maintain an index that maps application names to content objects in order

to respond to interests. The cost of the network-to-application name mapping would, in

the worst case, double the size of this index. Since the size of hash table key-sets in data

repositories is typically negligible (compared to size of the actual data), this should not result

in any significant barrier.

Assuming the producer maintains this reverse mapping, suppose it receives an interest for

N̄ that has k mapped segments, l application segments, name fingerprint Np and optional

payload. Using the inverse mapping, it can invert the first k segments, and thus recover the

original full name used by the interest-issuing consumer’s application. This process does not

distinguish between interests for static and dynamic content, since a name for either type of

content must have a prefix corresponding to at least k leading segments, i.e., the network

locator portion of the name. In case of interests for dynamic content, the “dynamic” portion

of the name is the suffix that has at most l segments. Recall that this portion of the name

is not mapped, i.e., it remains “human-readable” as in standard CCN names.

16If the network name can be used to index into a repository for statically generated content, then inversion
is not necessary.

17Note that the producer can not compute the inverse based only on network prefixes if T(·) if a crypto-
graphic hash function, as we propose.

248

One drawback of imposing this reverse mapping is that T(·) must be fixed and adopted by

all consumers and producers. This limits the scalability of the proposed naming scheme and

does not facilitate seamless evolution, or replacement, of T(·). One obvious way of relaxing

this requirement is to support multiple T(·) functions. To do so, producers should be able

to map any received network name format to the requested content. This would require a

separate index for each supported T(·).

As far as the second implication for producers, recall that, when forwarding a content object,

its name is used only for exact matching, i.e., there is no LPM as with interests. This

means that the producer can replace the full network name with just Np. This appreciably

reduces router overhead and fixes the overall name size in the content object header. This is

very beneficial when the size of a content’s name exceeds that of the payload, which might

be the case for small contents produced by IoT sensors [72] or NACKs [86].

Forwarding Implications

Figure 6.7 shows the computations needed to forward an interest per standard CCN in a

forwarder that processes application names with a hash-based FIB. For an n-segment name,

a forwarder must compute at most n hashes. The complete name hash is used to index the

CS, PIT, and FIB, while the remaining (n − 1) hashes are used to index only the FIB (in

the worst case).

Clearly, FIB lookup is the most expensive operation as it requires the most hashes. The LPM

algorithm is typically implemented using Bloom filters (BFs) in hardware-based forwarders.

This is because the n independent hash functions and lookups can be done in parallel.

However, in software, BFs are not appropriate since the BF index operation is necessarily

sequential. To the best of our knowledge, So et al. [289] present one of the leading software-

based techniques for FIB lookup based on hash tables. Specifically, to lookup a name prefix

249

Figure 6.7: Interest forwarding with hash tables [289]

with k segments, the technique in [289] performs a single hash (for each segment), one

modular reduction (based on the number of hash table buckets), and a memory lookup. The

penalty of reading memory not in the data cache is over 100 memory stall cycles.18 For

example, the cost of computing a 64-bit hash with SipHash [289] is 5.94c/b. In this case,

the cost of hashing a name exceeds that of the penalized lookup if the name being hashed

exceeds 16 bytes. Thus, for names longer than 16 bytes, hash function computation accounts

for at least half the cycles needed for hash table lookup.

This is where the motivation for the proposed network naming scheme becomes most ap-

parent: our proposal removes hashing overhead from: (1) FIB hash table lookup and (2)

complete name hash (for CS and PIT lookups). In the former case, this reduces the fast-path

overhead by at least the cost of the mapping function (depending on the name length). In

the latter case, PIT and CS lookups are simplified for reasons discussed above. Since both

PIT and CS are effectively indexed by Np, this is the only information required to read and

write to these data structures. Also, since Np is always included in interest and content

packets, this computation is removed from the fast path.

18If the memory location is in the cache, there is no stall penalty.

250

As with producers, routers would have to support a range of T(·)-s by accommodating

different T(·) output sizes. This can be done by (1) re-hashing network names when indexing

any of these tables, or (2) maintaining a separate index for each supported size. In case (1),

we claim that the router overhead is still reduced since the input to these re-hash functions

is always a fixed size, not exceeding 32 bytes; application names may very well exceed this

size and therefore take more time to hash. In case (2), although table management and

maintenance might become more complicated, there will be no need for re-hashing. We

implemented a variety of FIB algorithms and compared their performance with and without

network names. Section 6.2.5 discusses our methodology and results.

Routing Protocols

Our proposal does not require any changes to CCN routing protocols. Producers announce

application name prefixes for namespaces they control. Routers then hash received prefixes

to populate FIB tables. To guarantee correct interest forwarding, the function used by

routers to fill FIBs and T(·) used by consumers when generating network names must be the

same. This is the same requirement for the producer-generated reverse mappings mentioned

in Section 6.2.3. Similarly, multiple T(·) functions can be supported by routers. This would

require routers to have multiple FIB entries per prefix – one for each supported hash function.

Clearly, this represents a trade-off between scalability and mapping agility, versus increased

FIB table sizes. Alternatively, producers could advertise prefixes already transformed into

network name formats.

6.2.4 Experimental and Statistical Analysis

In this section, we compare our proposal to the standard CCN naming scheme, aiming to

show that network names are functionally equivalent to application names, (in terms of

251

uniqueness, size, and distribution properties) and enable correct forwarding with improved

performance. We use the Unibas dataset from the The Content Name Collection [11], which

contains unique URLs submitted by users to URL shortener websites. We convert these

URLs into a CCN-compatible name format. For example, the URL http://www.domain.

com/file.html is converted into the CCN name /com/domain/file.html. Table 5.2 shows

some characteristics of the Unibas dataset.19

Table 5.3 illustrates name distribution per number of segments in each name. It shows the

number of names in the dataset that contain n segments for n ∈ [1, 20]. Note that: (1) almost

30% of names have 5 segments, and (2) names of up to 20 segments account for 99.876% of

the Unibas dataset. Also, we use application names that only contain locator segments, (i.e.,

with no identifier segments) because such identifiers are not easily distinguished from locator

segments outside the application layer, and they are included in network names exactly as

they appear in application ones.

(a) Unibas average name length and standard devia-
tion for various T(·) sizes.

(b) Average name length increment for various T(·)
sizes.

Figure 6.8: Network and application name network overhead comparison

19For practical reasons, we truncate names beyond the maximum size of 2, 000 bytes and 80 segments [16].

252

Figure 6.9: Average name fingerprint network overhead

Table 6.3: Prefix distribution per # of prefix segments

Number of prefix
segments n

Number of unique
prefixes m

Percentage

1 185, 769 0.021%

2 10, 159, 460 1.167%

3 138, 848, 082 15.943%

4 305, 236, 992 35.049%

5 356, 952, 045 40.987%

6 225, 092, 000 25.846%

7 162, 898, 537 18.705%

8 98, 471, 166 11.307%

9 40, 003, 541 4.593%

10 19, 165, 574 2.201%

11 10, 485, 282 1.204%

12 7, 597, 933 0.872%

13 3, 514, 400 0.404%

14 2, 540, 599 0.292%

15 1, 952, 318 0.224%

16 1, 193, 997 0.138%

17 1, 066, 544 0.122%

18 1, 044, 263 0.120%

19 771, 267 0.089%

20 646, 401 0.074%

253

Encoding Overhead

An advantage of fixed-size mappings to generate network names is that all hash values in

the T MAPPED XXX segment have the same size. However, a name can still have an arbitrary

number of segments, since there is no such restriction. Depending on the mapping function

and whether its output is truncated, network names might be longer or shorter than their

application counterparts. Also, T MAPPED XXX segments an carry extra 4 bytes: 2 for the

type and another 2 for the length. Therefore, the total length of a T MAPPED XXX segment

is (k ∗ s) + 4, where k is the number of name segments involved in T(·)’s computation and

s is the truncated size of T(·). Whereas, the total length of a standard CCN TLV-encoded

name is
∑k

i=1(|N [i]|+ 4).

Figure 6.8a demonstrates the Unibas dataset average name length (in bytes) and the stan-

dard deviation for various truncated output sizes of T(·). (TLV represents application names

encoded in TLV format.) Figure 6.8b shows the average name length increment (or decre-

ment) for various truncated output sizes of T(·), as compared to the TLV-encoded application

names. We note that for T16(·), proposed network names offer size of reduction of 40%. For

T32(·), network names result in only 2% additional length over application ones. However,

for T160(·), network name sizes increase by a factor of 2.5.

One advantage of network names in content objects is their fixed size. Similar to the dis-

cussion above, Np might be larger or smaller than the original application name, depending

on T(·) output size. We explore encoding overhead of name fingerprints in content headers

under three T(·) output bit-sizes: 256, 384, and 512. We assess network overhead in two

ways:

• Average overhead: overhead of using the fingerprint as compared to each name in the

Unibas dataset. Results are presented as the average of all the individual overhead

values.

254

Table 6.4: Probability of collision results.

n
T16(·) T32(·) T48(·) T64(·) T128(·) T160(·)

Exp. Ana. Exp. Ana. Exp. Ana. Exp. Ana. Exp. Ana. Exp. Ana.

1 0.77 0.77 9.31E-10 9.35E-10 0 2.18E-19 0 5.07E-29 0 1.49E-67 0 8.08E-87

2 1 1 2.80E-6 2.79E-6 0 6.51E-16 0 1.52E-25 0 4.46E-64 0 2.42E-83

3 1 1 5.12E-4 5.12E-4 1.21E-13 1.22E-13 0 2.83E-23 0 8.32E-62 0 4.61E-81

4 1 1 2.41E-3 2.41E-3 7.14E-13 5.88E-13 0 1.37E-22 0 4.02E-61 0 2.18E-80

5 1 1 3.27E-3 3.27E-3 7.57E-13 8.04E-13 0 1.87E-22 0 5.50E-61 0 2.98E-80

6 1 1 1.33E-3 1.32E-3 2.52E-13 3.20E-13 0 7.44E-23 0 2.19E-61 0 1.19E-80

7 1 1 7.01E-4 7.01E-4 1.63E-13 1.67E-13 0 3.90E-23 0 1.15E-61 0 6.21E-81

8 1 1 2.59E-4 2.59E-4 7.82E-14 6.12E-14 0 1.42E-23 0 4.19E-62 0 2.27E-81

9 1 1 4.31E-5 4.31E-5 7.11E-15 1.01E-14 0 2.35E-24 0 6.91E-63 0 3.75E-82

10 1 1 9.93E-6 9.93E-6 0 2.32E-15 0 5.40E-25 0 1.59E-63 0 8.60E-83

11 1 1 2.96E-6 2.98E-6 0 6.94E-16 0 1.62E-25 0 4.75E-64 0 2.57E-83

12 1 1 1.57E-6 1.56E-6 0 3.64E-16 0 8.48E-26 0 2.49E-64 0 1.35E-83

13 1 1 3.34E-7 3.35E-7 0 7.79E-17 0 1.81E-26 0 5.33E-65 0 2.89E-84

14 1 1 1.75E-7 1.75E-7 0 4.07E-17 0 9.48E-27 0 2.79E-65 0 1.51E-84

15 1 1 1.05E-7 1.03E-7 0 2.41E-17 0 5.60E-27 0 1.65E-65 0 8.92E-85

16 1 1 3.73E-8 3.86E-8 0 9.00E-18 0 2.09E-27 0 6.16E-66 0 3.34E-85

17 1 1 3.21E-8 3.08E-8 0 7.18E-18 0 1.67E-27 0 4.91E-66 0 2.66E-85

18 1 1 3.05E-8 2.96E-8 0 6.88E-18 0 1.60E-27 0 4.71E-66 0 2.55E-85

19 1 1 1.70E-8 1.61E-8 0 3.75E-18 0 8.74E-28 0 2.57E-66 0 1.39E-85

20 1 1 1.07E-8 1.13E-8 0 2.64E-18 0 6.14E-28 0 1.80E-66 0 9.78E-86

• Overhead compared to the average name: overhead as compared to the average length

of all names in the Unibas dataset.

Figure 6.9 shows results of using these methods for computing network overhead for the

name fingerprint. It demonstrates that giving more weight to individual names yields higher

overhead as compared to the average name length. There is a size increase for all T(·)s since

names in the dataset are generally shorter than 256-512 bits. However, since the content

namespace has substantial room to grow, this overhead will likely decrease as application

names grow and diversify.

Collision Resistance

As mentioned in Section 6.2.2, T(·) must at least be a collision-resistant mapping function

and its output can be truncated for practical purposes. However, truncation might affect

255

collision-resistance. To this end, we now look at the collision probabilities in network names

for various truncated sizes of Ts(·), based on prefix length of names in the Unibas dataset.

Specifically, we compute the collision probability for at least two unique application name

prefixes of n segments (n ∈ [1, 20]). Table 5.3 shows the name distribution per number of

prefix segments. Over 40% of the names have a unique prefix of 5 segments.

We evaluate the collision probabilities experimentally as well as analytically. To address the

latter, we use the Binomial distribution with parameters m and p as in Equation 6.4.

f(d) =

(
m

d

)
pd(1− pd)m−d (6.4)

f(d) is the probability of a unique name prefix mapped using Ts(·) occurring at least d

times among network name prefixes of length n ∈ [1, 20], m is the size of this set, and

p is the probability of a single element of that set to occur. Assuming Ts(·) is based on

a cryptographic hash function, its truncated output is guaranteed to be pseudo-random.

Therefore, p = 1/2s.

The probability of collision that we are trying to determine is f(d) for d ≥ 2. This is because

a collision occurs whenever two or more prefixes map to the same value in the set of mapped

name prefixes of length n. We denote this by f(2+), computed using Equation 6.5.

f(2+) = 1− f(0)− f(1) = 1−
(

1− 1

2s

)m
− m

2s

(
1− 1

2s

)m−1

=

1−
(

1− 1

2s

)m [
1 +

m

2s

(
1

1− 1
2s

)]
=

1−
(

1− 1

2s

)m [
1 +

m

2s − 1

]
(6.5)

Table 6.4 shows f(2+) using the given values of m in Table 6.3 (second column) and differ-

ent truncated output sizes [16, 32, 48, 64, 128, 160]. ‘Exp.’ represents collision probabilities

256

obtained from experiments and ‘Ana.’ represents the same probabilities computed analyt-

ically using Equation 6.5. Highlighted numbers indicates anomalies between experiments

and analytical results. We compared these values of the collision probability with those

computed by mapping and truncating all the names in the Unibas dataset with prefixes of

length n ∈ [1, 20]. From this comparison we observe the following:

• Collision probability for T16(·) is 1 because the number of names with prefix n ∈ [2, 20]

is over 216, which is the output space size of T16(·).

• Experimental collision probability for T64(·), T128(·), and T160(·) and some n values of

T48(·) is 0. This is because the number of names with prefixes n in Table 5.3 is small

compared to the output space size of the previous mapping functions. Therefore, an

experimental collision cannot occur.

• Collision probability for T32(·) is nearly equal to the distribution in Table 5.3. Specifi-

cally, it reaches its maximum for n = 5, which is the most common prefix length among

the names in the Unibas dataset. Figure 6.10 depicts this comparison.

6.2.5 Performance Assessment

In this section, we provide a comprehensive assessment of network name performance in

a variety of FIB implementations. We experiment with FIB implementations that would

benefit from network names, including those based on hash tables and bloom filters. We

refer to these types of FIBs as hash-based FIBs. Trie-based FIBs are only useful for names

whose segments, and the character tokens within each segment, can be ordered. Our net-

work naming scheme removes this property since it replaces otherwise sortable segments

with (pseudo)random hash digests. Thus, network names prohibit trie-based FIBs. Before

describing our experimental results, we first describe each FIB algorithm and data structure

used in our study.

257

Figure 6.10: Experimental and analytical collision probabilities for T32(·)

FIB Algorithms

In the following subsections, we present designs of various hash- and trie-based FIBs.

Naive FIB The naive FIB is one that performs LPM by combining a reversed sequential

scan of a name and standard hash table lookup. Specifically, for each prefix, it computes

the hash digest of that prefix and uses the result to index into a hash table. Each hash table

entry stores a list of prefixes (or their digests) and the interface vector to which each prefix

should be forwarded. If a prefix match is found in a hash table list, that prefix is returned.

Otherwise, FIB lookup is repeated using a prefix of one less segment. This process continues

until (a) a match is found or (b) every segment is checked and no matches are found. In case

(b), the FIB typically returns an error and the forwarder is expected to drop the packet or

generate a NACK.

258

Aside from memory lookup, this runtime is dominated by prefix hash computations. Thus,

this algorithm could utilize network names by removing the hash computation entirely: the

i-th hash prefix of N is simply the i-th segment of N̄ .

Cisco FIB The Cisco FIB [289] is a modification of the naive FIB tuned for high-speed

forwarding. Specifically, it includes the following variations:

• SipHash [46] is used as the hash function. This was motivated by its low cycle/byte

cost and high collision resistance properties. (It is not, however, a cryptographic hash

function. It is only a pseudorandom function when appropriately keyed.)

• The hash table implementation is made compact to exploit memory caches. Specifi-

cally, hash table entries are compacted such that multiple can fit on a single cache line.

This is done to improve memory access latency and remove worst-case memory lookup

stalls.

• LPM artificially starts with the M -th segment, rather than the last segment, to avoid a

complete name iteration. If the FIB indicates that a prefix containing d > M segments

is present, LPM restarts at the last segment as in the normal LPM case. Otherwise,

LPM resumes iterating backwards from the (M − 1)st segment. Here, M is a tunable

parameter.

The Cisco FIB benefits from network names since unnecessary hash computations are re-

moved.

Caesar FIB The Caesar FIB [312] combines hash tables and BFs to improve lookup speed.

It introduces Prefix Bloom Filters (PBFs) which take as input a name and return the longest

number of matching segments in the FIB, or 0 otherwise. Lookup works by first querying

the PBF to determine the number of prefixes that match in the FIB. THe hash of this prefix

is computed and then used to index into a hash table storing link identifiers.

259

N2 N3 N4 N5 N6 N7

H

1 1

m

b
H(N1

1)

H(Nd
1) H2(N

d
1)

d

N1

Figure 6.11: Caesar FIB Prefix Bloom Filter

A PBF data structure, shown in Figure 6.11, is a collection of b BFs of size m bits each.

Each internal BF has the same number and type of k hash functions. Lookup in a PBF

pbf works as follows. Given a name N , pbf computes H(N1
1) to determine which of the b

BFs to inspect.20 Once a target BF filter is identified, pbf queries it using a standard LPM

algorithm. Specifically, for index i = |N | to 1, pbf queries filter using h1(N i
1), . . . , hk(N

i
1). If

this results in a match, i.e., if all of the corresponding bits in the BF are set, i is returned

as the result. If no match is found, 0 is returned.

One significant performance improvement offered by this variant is the use of linear hashing

to avoid redundant and unnecessary BF hash computations. Specifically, given a name with

d segments and PBF with k hash functions, a straightforward implementation would require

kd(d − 1)/2 hash computations. To avoid this O(k × d) complexity, one can compute each

hash as follows:

Hi(N
j
1) =

 hi(N
j
1) if i = 1 or j = 1

Hi(N
1
1)⊕H1(N j

1) otherwise

20This filtration step serves to group names with identical prefixes into the same BF. This is done based

on the assumption that the first segment is a significant-enough differentiator to evenly distribute the load
across the b BFs.

260

M

M

H1(N
5
1) H2(N

5
1) H3(N

5
1)

N2 N3 N4 N5 N6 N7N1

Figure 6.12: Merged BF FIB

One variant of the Caesar FIB replaces the post-LPM hash table lookup with a series of BF

queries. Specifically, instead of indexing a hash table to find the output interface vector, one

can query a BF associated with each FIB interface. Each interface BF that returns a match

is added to the output interface vector. This alternative is more appropriate for hardware

implementations with a fixed number of output interfaces, since BF queries can be done in

parallel.

Merged BF FIB The Merged BF FIB from Wang et al. [324] builds on the per-interface

BF variant of the Caesar FIB by merging the PBF with the per-interface BF lookup. Specif-

ically, it replaces each individual BF in the PBF with a set of N BFs, one for each output

port. Lookup begins by querying all N BFs in the PBF block identified by H(N1
1). If there

is a match in filter Fi, then interface i is added to the output interface vector. If there is

no match among the N ports, an empty output vector is returned. This is shown in Figure

6.12.

Binary Patricia Trie FIB A Patricia trie [224] is a space-optimized trie. Each single-

child node is merged with its parent to remove individual branches. Branches between parent

261

and child nodes use labels, e.g., a character string. A prefix in a trie is composed of its root-

to-leaf path labels. By design, prefix lookup has complexity linear in the length of the inputs.

A binary Patricia trie is one in which branches are made based on single bit differences in

prefixes. These are well-known and extensively studied data structures used, among other

things, for IP address lookup in some Linux kernels [285].

Song et al. [295] presented a FIB based on binary Patricia tries, as shown in Figure 6.13. (The

underlined names are the tokens that were removed in a speculative FIB variant – described

below.) They chose this data structure because it exploits shared segments across different

prefixes, is agnostic to name form and representation (since they are treated as opaque,

sortable, binary strings), and does not require input name parsing before prefix lookup. Due

to the possibly large amount of space needed for these tries, Song et al. implemented a

“speculative” trie variant in which trie tokens are removed. (Tokens are actual labels stored

alongside trie nodes.) Forwarding decisions based on this reduced trie change from that of

LPM to “longest-prefix-classification” (LPC). (Without the tokens, one cannot tell if the

prefix matches that of the corresponding leaf node in the trie.) In practice, this means

interests without a matching FIB entry are still forwarded. The authors acknowledge that

problems such as forwarding loops may occur with speculative forwarding, and defer their

resolution to other means such as TTL exhaustion. To partly deal with this problem, their

final design is based on a so-called dual Patricia trie, which is a data structure where,

internally, there is a standard binary Patricia trie with tokens for LPM and a speculative

binary Patricia trie for LPC. Lookup involves two steps: (1) LPM with the tokenized trie

and then, if that fails, (2) LPC with the speculative trie. Since the former dominates in

performance, we do not experiment with speculative tries.

Tree-Bitmap and BF FIB The Tree-Bitmap and BF FIB of Quan et al. [260], called

TB2F, is designed based on the observation that parts of CCN names are better suited for

262

1

2 3

fooba

zr

bar baz

foo

prefix port
/foo
/baz
/bar

1
2
3

Figure 6.13: Patricia trie FIB

tries than hash tables (and vice versa). Accordingly, the TB2F design consists of both a

trie and set of (counting) BFs. Trie leaves point to a single BF. Inserting a name into

the FIB requires inserting its first T segments into the trie and then placing the remaining

suffix, called B segment, into the single BF associated with the corresponding trie leaf. This

separation permits the trie and BF to be partially processed in parallel. Specifically, B suffix

segment hashes can be computed while the trie is index.

There are two cases to consider for lookup. First, if a match with shorter than T segments

is found in the trie, the corresponding interface vector is returned and no further processing

is done. Otherwise, a pointer to a BF is returned. This BF is then indexed to return an

interface vector and name sub-prefix. (The full prefix is not returned since the BF only

stores B segments.) This sub-prefix is then combined with the first T segments of the name

to index into a hash table, yielding an output interface. Optimally, name lookup requires

only a trie traversal. Worst case lookup requires a trie traversal, BF lookup, and hash table

index. This complete flow is shown in Figure 6.14.

263

trie

interface vector

H H H H

CBF

 interface vector

H(NT+k
1)

k

N1
1 N2

1 NT
1 NT+1

B NT+2
B

NT+k
B NT+n

B

NT+1
B NT+2

B NT+k
B NT+n

B

H H

Figure 6.14: TB2F FIB lookup

Experimental Methodology and Results

We implemented each FIB algorithm in software to test each with network names. The code

for which is publicly available at [7]. We tested name insertion and lookup times for each

FIB. Names used to populate FIBs were drawn from the URL blacklist available at [15].

(This was chosen as the FIB load data to make our results compatible with the experimental

results conducted in [289].) To emulate real traffic loads, we extended the names in the URL

blacklist dataset according to statistics in the Unibas dataset. Specifically, we extended the

number of segments in each name so that the distribution of name segment counts matched

that of the Unibas dataset. Moreover, the length of each new added segment was drawn

from the distribution of segment lengths in the Unibas dataset.

After loading FIBs, we profiled insertion and lookup times by varying: (1) FIB algorithm,

(2) network name hash digest lengths, (3) number of BF hash functions used in BF-based

FIBs, (4) hash tables load factors, and (5) total FIB load (before lookup). We ran our

experiments on a desktop computer with an Intel Core i7-3820 CPU with 3.6GHz cores and

24GB of DDR3 RAM running Ubuntu 14.04 LTS. The following subset of our results fix the

264

number of BF hash functions to 8, hash table load factor to 42, and total pre-lookup load

to 650.

Figure 6.15 shows the percentage improvement using network names for hash-based FIBs.

Removing hash computations on unbounded name segments improves efficiency by approx-

imately 80%. Figure 6.16 compares the lookup times of a Patricia FIB to Naive and Cisco

hash-based FIBs, with and without the network names. We observe that lookup times for

Cisco FIBs with network names are much less than Patricia tries. Figures 6.17 and 6.18

show a similar comparison for Caesar, Caesar-Filter, and Merged-Filter FIBs, except that

we compare against Patricia and TB2F FIBs. (The parameters of each FIB are shown in

the figures.) In all cases, we see that software-based BFs worsen the performance. However,

with network names, Caesar FIBs can surpass both Patricia and TB2F FIBs.

Given that these results are highly dependent on the platform, name dimensions, and FIB

parameters, it is difficult to affirmatively say which FIB is superior. However, what is clear is

that network names offer performance improvements to hash-based FIBs FIBs when memory

allocations are minimized. We leave assessment of hardware implementations to future work.

6.2.6 Security Considerations

From a security perspective, network names prompt several issues. Perhaps the most im-

portant is related to content signatures. Traditionally, signatures include the (application)

name and payload of a content object. However, since packets no longer carry application

names, the question of how one might verify content signatures in the network arises. Notice,

however, that the name fingerprint Np is included in interests and content objects. Crypto-

graphically, there is no difference between hashing over the application name and payload

vs hashing over the name fingerprint and payload. Thus, if signatures are generated using

Np instead of the application name, then routers can still perform in-network verification.

265

4 8 16 32
Name Component Hash Size [B]

4 × 101

5 × 101

6 × 101
Pe

rc
en

ta
ge

 Im
pr

ov
em

en
t [

%
]

Naive
Cisco

Figure 6.15: Network name percentage improvement hash-based FIBs (Naive and Cisco)

Patricia naive
naive[4]

naive[8]
naive[16]

naive[32]

Algorithm

104

105

106

M
ea

n
Lo

ok
up

 T
im

e
[n

s]

(a) Patricia vs Naive hash-based FIB

Patricia cisco
cisco[4]

cisco[8]
cisco[16]

cisco[32]

Algorithm

104

4 × 103

6 × 103

M
ea

n
Lo

ok
up

 T
im

e
[n

s]

(b) Patricia vs Cisco hash-based FIB

Figure 6.16: Patricia trie FIB vs Naive and Cisco hash-based FIBs

Second, since network names are computed with (possibly truncated) obfuscation functions,

name prefix collision in a FIB would cause an interest to be forwarded on an incorrect

interface. We believe that this is not an issue in practice because a FIB is populated by

a routing protocol. Thus, the routing protocol (which is exposed to application names)

266

Patricia

caesar-4-16

caesar-4-16[4]

caesar-4-16[8]

caesar-4-16[16]

caesar-4-16[32]

Algorithm

104

105

106

M
ea

n
Lo

ok
up

 T
im

e
[n

s]

(a) Patricia vs Caesar-4-128 FIB

Patricia

caesar-filt
er-4-16

caesar-filt
er-4-16[4]

caesar-filt
er-4-16[8]

caesar-filt
er-4-16[16]

caesar-filt
er-4-16[32]

Algorithm

104

105

106

107

M
ea

n
Lo

ok
up

 T
im

e
[n

s]

(b) Patricia vs Caesar-Filter-4-128 FIB

Patricia

merged-filte
r-4-16

merged-filte
r-4-16[4]

merged-filte
r-4-16[8]

merged-filte
r-4-16[16]

merged-filte
r-4-16[32]

Algorithm

104

105

106

M
ea

n
Lo

ok
up

 T
im

e
[n

s]

(c) Patricia vs Merged-Filter-4-128 FIB

Figure 6.17: Patricia trie FIB vs Caesar-4-128, Caesar-Filter-4-128, and Merged-Filter-4-128
FIBs

can explicitly prevent colliding names from being inserted into the FIB. Moreover, with

cryptographic hashes, collision probability is negligible, as supported by experiments and

analysis.

The third issue is that an adversary might provide fake network names that would cause

interests to be forwarded towards a given router or producer as a form of denial-of-service

(DoS). For example, if an adversary knows that a network name with the first segment equals

hash digest x, then it can generate and issue fake interests with that prefix even if it does

267

TBF[3-4-16]

caesar-4-16

caesar-4-16[4]

caesar-4-16[8]

caesar-4-16[16]

caesar-4-16[32]

Algorithm

104

105

106

M
ea

n
Lo

ok
up

 T
im

e
[n

s]

(a) TBF-3-4-128 vs Caesar-4-128 FIB

TBF[3-4-16]

caesar-filt
er-4-16

caesar-filt
er-4-16[4]

caesar-filt
er-4-16[8]

caesar-filt
er-4-16[16]

caesar-filt
er-4-16[32]

Algorithm

105

106

107

M
ea

n
Lo

ok
up

 T
im

e
[n

s]

(b) TBF-3-4-128 vs Caesar-Filter-4-128 FIB

TBF[3-4-16]

merged-filte
r-4-16

merged-filte
r-4-16[4]

merged-filte
r-4-16[8]

merged-filte
r-4-16[16]

merged-filte
r-4-16[32]

Algorithm

105

106

M
ea

n
Lo

ok
up

 T
im

e
[n

s]

(c) TBF-3-4-128 vs Merged-Filter-4-128 FIB

Figure 6.18: TBF-3-4-128 FIB vs Caesar-4-128, Caesar-Filter-4-128, and Merged-Filter-4-
128 FIBs

not know the corresponding application name segment. However, this is no different from

currently possible interest flooding attacks [24, 85, 315]. Therefore, any solution to standard

CCN interest flooding attacks would also prevent this type of DoS.

A more relevant and harmful DoS attack in the current CCN architecture is where an ad-

versary generates interests for names that collide in the (hash-table-based) PIT and induce

expensive collision-resolution steps [289]. This attack is not applicable with network names,

since Np is pre-computed using a collision-resistant hash function. That is, if an adver-

268

sary sends multiple interests with the same network name, then the probability that they

correspond to different application names is negligibly small.

Revisiting Data Plane Attacks

In this section we revisit the data plane attacks of Section 6.2.1. We show how network

names obviate PIT and CS attacks while simultaneously increasing FIB attack difficulty.

PIT and CS Attacks Computational DoS attacks on the PIT and CS are effectively

eliminated with network names. Since it is required that Np is the first segment of a network

name N̄ , this value can be quickly parsed and used to index either data structure in constant

time.

FIB Attacks As discussed in Section 6.2.1, the core problem is that data names carry

application-layer meaning, and the network cannot (or should not) restrict this for perfor-

mance or traffic management reasons. Thus, there is no CCN-friendly name format that

could mitigate FIB attacks. However, as shown in the previous section, network names can

significantly reduce router work when performing FIB lookups.

6.3 Network-Layer Integrity Checks

Content signature verification is optional in CCN. Thus, some routers may blindly forward

(possibly invalid) content. This permits on-path attackers that hijack prefixes or modify

content in transit to go undetected on some network paths. In the worst case, consumers

may be first to learn that content is fake or poisoned, and they will have no information

about which upstream router(s) is (are) malicious.

269

The only way around an on-path attacker is to bypass it by adjusting routers’ forwarding

information. However, without knowledge of attack origin or network topology, this ad-

justment can be done very far away from the actual adversary, e.g., at consumers. To aid

routers in making informed forwarding adjustments, DiBenedetto et al. [106] proposed an

adaptive forwarding strategy based on consumer-provided content “complaints.” Specifically,

consumers that detect poisoned content inform upstream routers about said content and pro-

vide them with information needed to check its validity. A router verifies such downstream

complaints and adjusts its forwarding strategy to avoid paths that lead to corresponding

producers. Complaints are recursively forwarded upstream so that every router can adjust

its forwarding table. Despite its simplicity, this approach has several undesirable features:

• Complaint messages are a form of computational DoS on routers, due to cryptographic

operations needed to validate them. If complaint messages are unprotected, another

type of DoS would occur since attackers can generate spurious complaints.

• Complaint messages can be very large, since they encompass fake content and all

information needed to verify its authenticity.

• Routers are forced to update forwarder routes even though the immediate upstream

routers which provided content may not be malicious. This can lead to suboptimal

route selection that harms downstream routers. For example, routers could unneces-

sarily choose a more expensive link.

More importantly, DiBenedetto et al. propose an application-layer remedy to a network-

layer problem. Certainly, on-path attackers are not unique to ICN. They may exist in

IP networks as transit routers which modify packet payloads in motion, or drop packets

altogether. Thus, on-path attackers must be dealt with at the network layer. In other words,

while content authenticity is strictly an end-to-end issue, content retrieval, i.e., avoidance of

on-path attackers, is a network-layer concern.

270

In this section we reconcile content authenticity and retrieval with an efficient per-hop content

integrity checking mechanism. The main idea is to allow routers to immediately detect when

(at least) one upstream peer has modified a content object. Intended contributions are:

1. A novel “adversary leap frog” scheme that uses cryptographic MACs to ascertain au-

thenticity of upstream content packets.

2. A merge of IKB with the above scheme to enable in-network content authenticity and

secure content retrieval.

3. A security analysis and experimental assessment of the proposed scheme to show its

utility and practicality.

6.3.1 Content Poisoning and Namespace Arbitration

Content poisoning is an attack on content retrieval that prevents consumers from obtaining

valid (authentic) data. This attack comes in two flavors: proactive and reactive, as defined

by Gasti et al. [137]. In the remainder of this section, we focus on the latter and use the

term content poisoning strictly in that context.

Reactive content poisoning attacks occur when an on-path A injects fake content objects

into the network. Consumers and routers can identify fake content by verifying content

signatures. However, not all routers verify content signatures since it can be too computa-

tionally expensive. Thus, content injected by A percolates through the network until some

entity verifies it. When a router or a consumer detects fake content, it only learns that some

upstream router or a producer tampered with that content. The verifying entity has no insight

into where the attack occurred.

Consider a path of length n with intermediate routersRi−1, Ri, andRi+1, between a consumer

Cr and producer P shown in Figure 6.19. Downstream (left-facing) arrows indicate content

271

Cr Ri+1RiRi�1 P

Figure 6.19: Content poisoning attack

Cr RiRi�1 P

Figure 6.20: Content generation attack

flow from P to Cr. A is an on-path attacker that can attack in (at least) two ways: (1) by

modifying content packets in transit from P , or (2) by responding with fake content. We

refer to these attacks, respectively, as on-path modification and on-path generation attacks.

They are illustrated in Figures 6.19 and 6.20, respectfully. Upon authenticating content,

any router Rj, j ∈ [1, i − 1], only learns that either some router Rk, k ∈ [j + 1, n] or P

provided fake content. We claim that detecting on-path attacks by an intermediate router

is equivalent to checking content integrity and authenticity as content flows through the

network.

To obviate the need for signature verification in the fast path, DiBenedetto et al. [106] pro-

posed a reactive technique to detect and bypass on-path attacks. Their proposal is premised

on the argument that undetected modification and generation attacks result from producers

publishing under unauthorized namespaces. This is addressed by requiring consumers to

report fake content to routers that verify these reports and forward them upstream, if neces-

sary. Routers then greedily find an alternate path to the valid content, by either: choosing

a different forwarding interface for the content, or probing all interfaces until valid content

is returned. Although this mitigation strategy works in theory, it has certain drawbacks

discussed in Section 6.3.

272

Moreover, this approach is based on the dubious assumption that namespace ownership

is proven by content published under that namespace. This means that any application

can publish under any namespace provided that it possess the public key that a consumer

trusts. However, there is nothing preventing multiple applications from claiming ownership

of identical namespaces. To see why this is problematic, consider two applications A1 and

A2 that both claim ownership over namespace N =/a/b, i.e., both advertise themselves as

producers under N . Moreover, neither one is malicious. Since each application has its own

key pair, data produced by A1 and A2 are signed and then verified with different public

keys. Now assume consumer Cr wishes to obtain content /a/b/x from A1 using KeyId K1.

Cr issues an interest and provides K1’s ID. However, if A2 is closer to Cr than A1, A2

would produce content signed by K2, not K1. Therefore, all on-path routers as well as Cr

would deem the response invalid. However, whether it is invalid depends on who has proper

ownership over N . Clearly, this problem occurs since the network allows both applications

to advertise under N without verifying ownership.

Without a namespace arbitration mechanism, this problem is unavoidable. Thus, we con-

clude that a node can not unilaterally advertise under any namespace it wants. There must

exist some trusted authority that manages namespace ownership. This authority can help

prove ownership of a namespace. This way, namespace ownership can be ascertained before

routes are injected into the network. As a result, any after-the-fact content modification or

generation attack would stem from failure to check packet authenticity and integrity in the

data plane. Addressing this problem would thus mitigate on-path attackers.

6.3.2 Threat Model

We now outline our system threat model. We assume a network composed of routers,

producers, and consumers. Routers have identities (for network management purposes)

273

and can learn identities of nearby peers in the network. Also, routers may be organized into

autonomous systems (ASes). Routers are added to the network in a controlled and secure

fashion.

Each namespace is owned by an application (or identity) and is associated with a unique

public-private key pair. It is possible for multiple producers to serve the same namespace.

In this case, they would all belong to the same application. Lastly, there exists a globally

trusted authority responsible for managing namespace ownership. It may be implemented as

a centralized arbiter similar to IANA, a decentralized system such as DNS, or a distributed

system such as Namecoin [175]. For simplicity, we assume that the authority is a key-value

store which maps namespaces to the corresponding public key or an empty string (if no

application owns the namespace). Moreover, we assume that the authority is queried before

producers are allowed to inject namespace prefixes into the routing protocol.

We assume a general on-path adversary A that can compromise a polynomial number of

routers (up to k) and any producer. A has complete control over each compromised entity.

In particular, it controls the content and timing of messages generated and processed by

such entities. A can also spawn authenticated nodes under its control on demand. This

capability can be used to modify packets or generate fake content. Security against A means

that it is infeasible for A to perform these actions without detection. Once A is detected,

honest entities can take action to bypass it.

6.3.3 Integrity Zones

As mentioned above, on-path attacks are possible because there is no efficient means for

routers to verify packet integrity and origin authenticity in the fast path. Meanwhile,

application-driven solutions (see, e.g., [106]) have some prominent drawbacks. We believe

this problem should be addressed at the network-layer. With respect to integrity, hop-by-hop

274

packet mechanisms are insufficient since A can compromise individual routers. At the same

time, end-to-end integrity mechanisms are infeasible since “ends” are undefined: one end

could be a producer or an intermediate router’s cache. Ideally, we need something between

these two extremes.

For origin authenticity, digital signatures are insufficient for identifying the origin of fake

content. A router should be able to learn if a packet was generated by a producer who owns

the corresponding namespace. This is not the same as verifying that the packet is authentic,

since the verifying public key need not be the same as the namespace ownership key.

Our approach relies on integrity zones, which work as follows: Every router shares (and

rotates) a unique key with every router that is k ≥ 2 hops away. These keys are used to

generate and verify packet MACs to check packet integrity in transit. Upon receipt of a

content packet, a router verifies at most k MAC tags and, if all are valid, replaces them

with k new MAC tags generated locally. Upon receipt of an interest packet, each router R

appends its ID to the packet. If the number of downstream IDs exceeds k, R also drops the

oldest. In effect, MAC tags and router IDs form a sliding window of size k that moves as

packets propagate between producers and consumers. If A compromises at least k contiguous

routers, the scheme fails.

Integrity zones require distance knowledge to content producers, which can be provided by

a secure distance-vector routing protocol, such as DCR [135]. This is needed so that routers

can check if content was actually generated by an appropriate producer. When generating

content in response to an interest, which carries identities of the k previous hops through

which the packet flows, each producer computes and includes k MACs using keys associated

with these k routers. Downstream routers then validate producer- or router-generated MACs

before including their own, as described above. Also, the i-th downstream router, where

i ≤ k, must check that there are at least i valid MACs in the content packet. This ensures

that original MACs were not generated by an on-path A that hijacked a namespace.

275

CrCr PPRi�1 Ri+1Ri

Figure 6.21: A-controlled intermediate router (k = 2)

Integrity zones allow routers to play “adversary leap frog.” In other words, when less than

k contiguous nodes are compromised, a router can always learn exactly which router is

malicious and can take steps to remedy the situation in the forwarding plane. Inspired by

[155], the crux of our proposal is for routers to verify each content packet as it is routed

through the network. Consider the following example, where:

path = R1, R2, R3, . . . , Rn−2, Rn−1, Rn

is a path between some Cr and P . Moreover, assume that Cr previously issued an interest

for P that resulted in a content C being forwarded along the reverse of path. Now, suppose

that A controls Ri ∈ path, and modifies either the content packet or its signature. This

means that Ri+1 sees a valid content packet while Ri−1 does not. The goal is for Ri−1 to

learn that Ri is misbehaving. Ideally, Ri+1 computes a content MAC using a key shared with

Ri−1. Then, Ri−1 fails to verify this MAC and learns that Ri is malicious. This flow is shown

in Figure 6.21. Blue arrow shows dependency between Ri−1 that detects a problem and Ri+1

that does not. The network can then attempt to avoid and bypass Ri for all interests and

heal itself without requiring any consumer involvement.

To summarize, within a given integrity zone, each router is responsible for: (a) appending

its identifier to each interest, (b) verifying and removing k MACs of each content packet,

and (c) computing k MACs and appending them to each content packet. Thus, every router

performs 2k MAC operations for each interest and content pair. (See Section 6.3.5.) Below,

we discuss this approach in detail, including: (1) how routers obtain shared keys, (2) why

276

producer (anchor) distances are required, (3) packet formats and processing logic, and (4)

network recovery steps.

Leap-Frog Key Distribution

Each router shares a key with every router k ≥ 2 hops away. Depending on the network

ecosystem, these keys may be pre-shared between routers, i.e., within a single AS. Otherwise,

keys must be established using a key exchange protocol. One potential obstacle is that such

protocols require some form of a PKI to ascertain each peer’s identity. However, this is not an

insurmountable challenge, since most networks are managed and contain routers controlled

by the same administration. We therefore defer this bootstrapping phase to future work.

Anchor Distances

Integrity zones allow a router to prove that its k upstream routers did not modify a content

packet. However, if A hijacks a namespace there could be less than k MACs in a content

packet. This is only possible if the consumer-to-producer path has j < k hops. The packet

would then carry j MACs and each router on the path would know this distance and expect

the appropriate number of MACs.

There is one more edge-case: Let R be a benign router j ≥ 2 hops away from P . Suppose

that A is adjacent to R on the R→ P path, and assume that A attempts a data generation

attack. In doing so, it must provide k valid MACs verifiable by k downstream routers,

including R. Upon receipt of the fake content packet, R can only verify one MAC – the

one generated by A. If R does not know that P is after R on the path, R may incorrectly

conclude that the content packet is valid and forward it. However, if R knows that P is j

hops away, it knows to verify j MACs. R can therefore immediately learn that an attack

took place. Thus, security of this scheme relies on accurate anchor distances. We assume

277

the existence of a secure protocol that allows routers to learn the minimum distance to a

namespace anchor. This should be feasible assuming a global namespace ownership authority

discussed earlier. However, we defer exploration of this topic to future work.

Packet Formats and Processing

Each content packet carries MACs needed to check validity of previous k hops (see Figure

6.22). Also, each packet carries MACs necessary for the i-th downstream router to verify

previous k− i hops. Thus, a content packet carries no more than k(k+1)/2 MACs at a time.

MACs generated by each router are stored in a list. Also, each MAC is associated with a

symmetric key shared between two routers. For example, a MAC generated by a key shared

by Ri and Rj with IDs i and j is σi,j. Each MAC has an associated ID of the router that

generated it, denoted σi,j.ID. A router stores its shared keys in a table called KeyTable. A

key is fetched using an identifier, e.g., ki,j = KeyTable[σi,j.ID]. In S-expression notation, the

set of MAC lists stored in a packet header is represented as follows:

(T INTEGRITY ZONE

(T PACKET MACS [σi,i+1]

(T PACKET MACS [σi,i+1, σi,i+2])

. . .

(T PACKET MACS [σi,i+1, σi,i+2, . . . , σi,i+k])

)

When a router processes a content packet it deletes at most k MACs since they are useless

to downstream routers. This procedure is detailed in Algorithm 26. Processing an interest

is much easier: a router simply injects its own identifier in the interest header and forwards

it, if necessary. This is detailed in Algorithm 25.

278

Figure 6.22: Router MAC dependencies

Algorithm 25 Interest processing

Require: k
1: Input: I[N, IDs], Fin, RID

2: if N in the PIT then
3: Add Fin and IDs to the PIT entry with name N
4: else
5: Append RID to IDs to form IDs′

6: Lookup Fout in the FIB using N
7: Forward I[N, IDs′] to Fout

Algorithm 26 Content processing

Require: k
1: Input: C[MACs, D, V],
2: Output: C[MACs′, D, V], Fout
3: for li in MACs do
4: σ := li.pop()
5: kID := KeyTable[σ.ID]
6: if σ 6= MAC(kID, D||V) then
7: Drop C and flag upstream router as malicious

8: Drop first MAC for each li in MACs
9: Entry := PIT.Lookup(C)

10: if |MACs| < Entry.d} then
11: Drop C and flag upstream router as malicious

12: lR = []
13: for ID in Entry.IDs do
14: kID := KeyTable[ID]
15: lR.Append(MAC(kID, D||V)

16: C ′ := C.MACs.Append(lR)
17: return C ′, Entry.Fout

Currently, all MACs must fit in the per-hop header of the content packet. However, the

current CCN packet format restricts this header to a maximum size of 256 bytes. Assuming

a MAC of 128 bits, or 16 bytes, each packet can support a radius of at most k = 4.21 This a

21 This limit assumes there are no other per-hop headers, such as the interest lifetime or recommended
cache time. In practice, these headers are usually present in packets, meaning that k < 4. However, given

279

reasonable restriction, since it requires A to compromise k ≥ 4 contiguous routers to subvert

integrity zones.

MAC Compression

The packet format described in the previous section requires all MACs to be listed separately

in each content packet. The resulting overhead isO(k2) MACs per packet. To lower it, MACs

can be compressed. Consider the verification process at each hop. Each router verifies k

MACs individually and detects an attack if at most one fails. These k MACs could be

aggregated into a single MAC. Each router could then verify an aggregate. With this format,

the packet header would only need to carry a list of k aggregate MACs and list of k upstream

router IDs, as shown below:

(T INTEGRITY ZONE

(T ROUTER IDS [IDi+1, IDi+2, . . . , IDi+k]

(T PACKET MACS [σi+1, σi+2, . . . , σi+k])

)

With this format, each packet is processed as shown in Algorithm 27. This variant also

modifies per-hop headers in place, which is far more efficient.

Recovery

When a Ri detects that only one of its upstream neighbors Rj, j > i tampered with a content

packet, it concludes that Ri+1 is also malicious. This is because, if Ri+1 were not malicious,

it would have detected the attack by Rj, j > i + 1, and dropped the packet accordingly.

Therefore, Ri can remove all FIB entries that point to Ri+1. It does not need to probe the

that the packet format is flexible, we could easily extend the per-hop header capacity to accommodate these
new fields.

280

Algorithm 27 Content with compressed MAC processing

Require: k
1: Input: C[IDs,MACs, D, V],
2: Output: C[IDs′,MACs′, D, V], Fout
3: σ = 0λ . Empty string to start
4: for i := 1, . . . , k do
5: kID := KeyTable[IDs[i]]
6: t = MAC(kID, D||V)
7: σ = σ ⊕ t . Aggregate the MAC

8: if σ 6= MACs[1] then
9: Drop C and flag upstream router as malicious

10: Drop the first element of MACs and shift to the left
11: Entry := PIT.Lookup(C)
12: if |MACs| < Entry.d} then
13: Drop C and flag upstream router as malicious

14: for i := 1, . . . , |Entry.IDs| do
15: kID := KeyTable[Entry.IDs[i]]
16: MACs[i] = MACs[i]⊕ (MAC(kID, D||V)

17: return C, Entry.Fout

network to find a next-best route. If there are no longer any viable routes, Ri must generate

interest NACKs.

6.3.4 Security Analysis

Security of our integrity zones scheme is premised on whether A can compromise more than

k contiguous routers. If k = 2 and A compromises two contiguous routers, any part of the

packet can be modified without any downstream router detecting the problem. However, if k

is large enough such that A can not succeed, then integrity zones protects against generation

and modification attacks. We argue this below.

Claim 6.1. Assuming a MAC scheme secure against existential forgeries, and A that is

unable to: (a) compromise k contiguous routers along paths of length at least k routers,

or (b) compromise l contiguous routers along paths of length l < k, and a distance-vector

281

routing protocol that provides correct anchor distances, the integrity zones scheme is secure

against content modification and generation attacks.

Proof. First, we show that modification attacks are impossible. This follows from security

properties of the underlying MAC scheme. If c < k contiguous routers are compromised

and a packet is modified, then at least one MAC tag in a downstream router would fail

verification. This MAC corresponds to the upstream router which is malicious.

Assuming a namespace ownership authority, a producer can only advertise a namespace

which it owns. Therefore, data generation occurs when: (a) an on-path router maliciously

intercepts interests and responds with fake content, or (b) the producer provides fake content.

We address these cases together since they differ only in the distance to the producer. Assume

that the distance to the producer for the fake content from the verifying router is d. Also,

suppose that a packet with l MACs verifies correctly. There are three cases with respect to

l, k, and d: (1) l = k and d ≥ k, (2) l = k and d < k, and (3) l < k. (Note that l > k is

not possible based on the packet format.) In (1) and (2), R fails to detect the attack only if

a MAC was forged.22 Whereas, (3) only occurs if the packet traverses a path shorter than

k hops. Per our assumption, A can not compromise routers along this path and thus an

attack can not occur.

We note that interests only carry router IDs and not MACs. Tampering with this list by ap-

pending, removing, or changing IDs would only cause downstream routers to fail verification.

This is because upstream routers would use wrong keys to generate MACs.

As indicated above, one limitation of the integrity zone scheme is with paths of length l < k

routers. If A can compromise all l routers, the scheme fails to detect the attack.

22A MAC forgery occurs when A generates a valid MAC without knowledge of the secret key.

282

6.3.5 Performance Assessment

We now assess the overhead of per-packet verification with integrity zones. From a perfor-

mance perspective, computation overhead is incurred at every hop. Specifically, the scheme

involves at most 2k MAC operations: k verifications and k generations. Therefore, network

topology has no impact on per-packet overhead. Thus, our assessment has two parts: (1)

measuring efficiency of various MAC schemes, and (2) measuring impact of integrity zones

on consumer latency.

MAC Overhead

Let m be a message of |m| blocks that serves as MAC input and K be the corresponding

key. There are many popular MAC schemes, e.g.,: CMAC [294] and HMAC [193]. HMAC

is defined as follows:

HMAC(K,m) = H((K ′ ⊕ opad)||H((K ′ ⊕ ipad)||m)),

where opad and ipad are constants defined in the standard and K ′ is a key derived from the

master key K. CMAC, or CBC-MAC, is defined (roughly) as follows:

B0 = AES(K,m0)

Bi = AES(K,Bi−1 ⊕mi)

B|m| = AES(K,Bi−1 ⊕mi ⊕K ′)

CMAC(K,m) = B|m|

where K ′ is a key derived from K and Bi is the i-th output of encrypting m in CBC mode.

283

128B 256B 512B 1024B 2048B 4096B
Message Size

0

20000

40000

60000

80000

100000

120000

Av
er

ag
e

Ti
m

e
(µ

s)

k = 2
k = 3
k = 4
k = 5
k = 6

Figure 6.23: HMAC overhead

Both HMAC and CMAC require a complete pass over m. The choice depends on what is

available on the run-time platform. In general, we view HMAC and CMAC as approximately

equivalent in terms of performance (in the absence of AES acceleration). Figure 6.23 shows

the performance of HMAC as a function of message size. We see that overhead reaches the

millisecond mark when k approaches 6 and |m| exceeds 4KB.

However, this can be improved with the following optimization. Notice that both HMAC

and CMAC process all of m to produce a digest. Cryptographically, these functions provide

the equivalent security guarantees if a cryptographic hash digest of m, i.e., H(m) for some

pre-image resistant hash function, is the input to MAC. Pre-image resistance stipulates that

it must be infeasible to find another message m′ such that H(m) = H(m′), i.e., forgery

remains infeasible. With this in mind, our optimization works by first computing H(m)

and using that as input to each MAC operation. Figure 6.24 shows this optimization as a

function of message size and k. (We use SHA-256 as H, given its widespread use in CCN.)

Results indicate a significant reduction in processing time for nearly all data points.

284

128B 256B 512B 1024B 2048B 4096B
Message Size

0

10000

20000

30000

40000

50000

60000

Av
er

ag
e

Ti
m

e
(µ

s)

k = 2
k = 3
k = 4
k = 5
k = 6

Figure 6.24: Hashed HMAC overhead

Network Impact

To assess impact on consumer latency, we modified the ccns3Sim simulator [247, 2], based on

ns3 [269], to support our scheme. We then created a simple N -node path between Cr and P .

Every second, Cr issues an interest for a random content produced by P . We measure end-

to-end latency as a function of N with k = 2, which includes per-packet overhead induced

by each router. Results are shown in Figure 6.25, which plots degradation, i.e., percentage

latency increase over standard CCN.

285

4 5 6 7 8
Path Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

De
gr

ad
at

io
n

(%
)

Figure 6.25: Integrity zone latency reduction

6.3.6 Discussion and Challenges

Scalability

The integrity zones scheme entails lightweight hop-by-hop packet integrity checking that is

both computation- and bandwidth-efficient. However, it still incurs certain overhead. Since

each router must share a key with every router i = 2, . . . , k hops away, the number of keys

can become quite large. For example, suppose that R has 5 neighbors, each of which has

its own 5 (distinct) neighbors, excluding R. Then, if k = 2, R would have to store 25 keys

for each of these routers. Thus, storage overhead is a function of k and network topology.

In a highly connected network where routers have many neighbors, this may be prohibitive.

However, in such a scenario, it is far less likely for A to compromise all routers i = 2, . . . , k

hops away. Therefore, k can actually be lower. When there are fewer path choices for a

router, it pays to have a larger k, since A’s job becomes harder.

286

The per-packet overhead in each packet could be dealt with by only generating and veri-

fying MACs at AS boundaries. This would require ASes to share keys with other ASes in

the network. This may be more plausible than individual routers sharing keys since trust

relationships at the AS level are more common. Specifically, two AS operators can decide

whether or not to trust each other and, if so, allocate a key to the corresponding gateways.

Although this may simplify key management, it makes the attack origin detection less accu-

rate. When MACs are verified and generated by individual routers, i.e., not just gateways,

a router learns precisely where the on-path attack took place. At the AS level, a router

(gateway) only learns that an attack took place within an upstream AS.

Global Zone Size

We assumed that k is a global constant. However, this need not be the case. Indeed, k may

be AS-specific. It is the responsibility of a gateway between ASes to bridge the gap between

different zones sizes. For example, suppose that an interest is generated in AS D1 with

k = k1. It traverses a gateway G to another AS D2 with k = k2. G must share keys with all

of its neighbors at most max{k1, k2} hops away. When it receives the interest, it verifies k1

MACs (if present) and injects its own. Upon receipt of the corresponding content, it verifies

k2 MACs and injects max{k1, k2} MACs before forwarding it downstream. If k1 < k2, each

router in D1 would be able to verify its k1 MACs. However, if k1 ≥ k2, no router in D1 that

is k1 or more hops away from G can verify MACs generated upstream of G.

Privacy

At each hop, the integrity zones scheme requires interests (respectively, content objects) to

identify k downstream (respectively upstream) routers using their KeyId-s. This reveals path

information to each router, something that was not previously visible in CCN. This may be

287

problematic at the network edges, specifically, when a R is less than k hops away from a

consumer-facing router.

288

Chapter 7

Conclusion

This dissertation addressed security, privacy, and availability challenges in CCN. Chapter

4 explored different facets of access control. We began in Section 4.1 by proposing CCN-

PRE, a variant of content-based access control (CBAC) that uses (identity-based) proxy

re-encryption to simplify principal access key credential management by building off unique

name-to-data bindings. Using hybrid encryption, CCN-PRE incurs negligibly small crypto-

graphic overhead compared to network overhead. Certain variants of CCN-PRE also permit

in-network nodes to pre-fetch content re-encryption keys on behalf of consumers at the cost

of privacy.

We also discussed interest-based access control (IBAC) in Section 4.2, wherein access control

information is bound to requests (interests) instead of responses (content). We described two

IBAC variants based on different name obfuscation functions: encryption- and hash-based.

IBAC is secure when A is not on-path and can be modified to mitigate replay attacks from

an on-path A. Replay prevention requires network participation since caching routers must

honor producer-specified access control preferences and verify interest signatures. IBAC is

289

suitable for name privacy and access control on its own or in conjunction with CBAC. The

latter is necessary if, for example, router trust and participation is infeasible.

One problem common to CBAC and IBAC is revocation. Producers have no way to flush

stale or sensitive content from network caches on demand. To address this shortcoming,

Section 4.3 presented BEAD – Best Effort Autonomous Deletion – as a way to securely

communicate content deletion requests to caches. BEAD includes numerous deletion re-

quest forwarding techniques, such as reverse-path flooding, content traceback with in-cache

and local forwarding histories, and packet tracing. Experiments show that BEAD network

processing is negligible, though with imperfect coverage.

Chapter 5 surveyed privacy problems in CCN, with particular focus on elements of and

requirements for data privacy. In Section 5.1, we described two variants of data privacy:

weak and strong. Weak privacy requires deterministic name obfuscation and content en-

cryption. In contrast, strong privacy requires randomized name and content encryption,

which (essentially) reduces to end-to-end communication akin to TLS-protected traffic in

today’s Internet. Weak privacy via deterministic encryption benefits consumers that request

identical content (if it is cached). However, deterministic encryption is also susceptible to

frequency analysis attacks. In Section 5.2, we showed how a globally or locally distributed

adversary can use auxiliary popularity information about plaintext content along with ob-

served (encrypted) request frequencies to map encrypted requests to plaintext responses.

Our experiments indicate that caching helps mitigate this attack by limiting adversary vis-

ibility of request frequency. However, caches also permit adversaries to probe for recently

requested content, which is a different form of privacy attack. (See Acs et al. [23] for more

details.) Thus, caching benefits in CCN remain unclear at best.

Total encapsulation, or tunneling, is useful when consumers or producers require stronger

notions of privacy. For this purpose, we presented AC3N, a modification of ANDāNA, which

is the first Tor-like system for anonymous communication in CCN (and NDN). Similar to

290

Tor, AC3N creates concentric circuits of anonymizing routers that tunnel traffic between con-

sumers and producers. AC3N uses only symmetric key cryptography for efficient processing,

without session linkability problems. Specifically, static key identifiers are not sent in the

clear. AC3N performs favorably compared to unlinkable variants of ANDāNA.

Section 5.4 presented CCVPN, a network-layer tunnel akin to IPsec. CCVPN enables private

tunnels between a consumer or origin gateway and gateways associated with specific names-

paces. Interests and content are totally encapsulated in transit between tunnel endpoints.

This restricts caching and other in-network processing techniques to private domains, similar

to IPsec tunnels. CCVPN tunnels can be nested to build AC3N anonymizing circuits.

In cases where end-to-end encryption or tunneling are not appropriate, privacy should still

be feasible without an opt-in requirement. To that end, Section 5.5 presented TRAPS, a

mechanism that encrypts static content C(N) for any consumer who knows N . TRAPS

builds on message-locked encryption [52] to encrypt content with a key derived from the

(a) name, (b) content payload, or (c) both. Content that requires a ContentId to obtain is

thus difficult to decrypt with a priori knowledge. In contrast, content with popular names

are trivial to decrypt. TRAPS is designed to offer protection for unpopular content that is

known by some, though not all, consumers.

Chapter 6 focused on availability concerns in CCN. We began with an assessment of PITs

and their mandatory role in CCN. We showed that many claimed uses and benefits are

unnecessary or feeble at best. As an alternate design, we proposed a stateless CCN archi-

tecture in Section 6.1 which replaces PIT state with Backwards Routable Names (BRNs).

Interests carry a content name and originating BRN. Routers forward content with BRNs

back towards origins using FIB state. Experiments indicate that stateless content forwarding

is no worse than standard interest forwarding. Thus, little additional network overhead is

added. Furthermore, interest origins need not be a consumer; they can be gateway routers

291

that bridge stateful CCN with our stateless CCN variant. This permits hybrid stateless and

stateful CCN deployments.

In Section 6.2, we also proposed a new network naming scheme that removes static applica-

tion name segments from wire-encoded packets. Network names replace hierarchical name

segments with a sequence of (truncated) cryptographic hash digests, preceded by a full cryp-

tographic hash of the entire name (fingerprint). Name fingerprints are used to index PITs

and caches, thereby removing expensive name hash computations. This also removes a DoS

attack vector from processing long names. A secondary benefit is that less application data is

conveyed to the network. Analytical results suggest that network name segment hashes need

to be at least 24B for resistance against name collision attacks. Experimental results show

FIB lookup times with a variety of FIB algorithms and data structures are substantially

improved in contrast to standard CCN names.

Finally, we finished with a study of on-path attacks in Section 6.3. We argued that on-path

attacks in practice reduce to a lack of network-layer integrity checks. We then presented

integrity zones, which are network subsets in which all network routers share pair-wise keys.

Each router in a zone shares a key with every other router l = 2, . . . , k hops away from itself.

Routers MAC content objects in transit using keys identified by downstream interest paths.

Upon receipt of content, routers verify each MAC from (at most) k upstream routers. If any

MAC fails, an attack is detected and forwarding tables are adjusted to bypass the culprit.

Integrity zone MACs add no more than 256B to each packet. Processing times are low with

a suitable MAC algorithm, e.g., CMAC, and accelerated implementation.

Our study of security and privacy challenges highlights that, although CCN offers improve-

ments as a network architecture, it leaves much to be desired from a security and privacy

perspective. Some challenges, such as access control, can and should be addressed by appli-

cations. However, such techniques must not negate CCN benefits. Our work in Chapter 4

can be extended to design a holistic access control design that uses both CBAC and IBAC

292

for enforceable access control. BEAD could also be joined with the secure accounting scheme

of Ghali et al. [149] to give producers insight into where content is cached. BEAD flooding

mechanism can be used in select network domains from where accounting information orig-

inated. Other issues, such as privacy, remain elusive. Tunneling and end-to-end encryption

help mitigate these problems at significant cost. Conversely, encrypting names and con-

tent is more efficient, though insufficient for privacy. Information leaks from name lengths

and content popularity can be used to violate user privacy. Our work in Chapter 5 can be

extended to study the extent to which specific auxiliary and real popularity distributions

affect frequency analysis attacks. Lastly, availability concerns remain a long-standing open

problem in CCN. Our proposed architectural adjustments help reduce the attack surface

and bring CCN towards a more deployable architecture. Future work could explore hybrid

stateful and stateless deployments described in Chapter 6. By leaving PITs and caches at

network edges, where they serve more value, a hybrid design maintains many CCN benefits

while allowing scalability in network cores.

293

Bibliography

[1] CCNx distillery. https://github.com/parc/CCNx_Distillery. Accessed: May 14,
2016.

[2] CCNx integrity zone simulator. https://github.com/chris-wood/

ccn-onpath-simulation-ccnsim. Accessed: November 23, 2017.

[3] Crypto++. https://www.cryptopp.com. Accessed: November 21, 2016.

[4] Crypto++ 5.6.0 Benchmarks. https://www.cryptopp.com/benchmarks.html. Ac-
cessed: November 21, 2016.

[5] DFN-Verein. http://www.dfn.de/. Accessed: February 18, 2016.

[6] DFN-Verein: DFN-NOC. http://www.dfn.de/dienstleistungen/dfninternet/

noc/. Accessed: February 18, 2016.

[7] libfib: Library of CCN FIB Implementations. https://github.com/chris-wood/

fiblib. Accessed: January 15, 2017.

[8] Mobilityfirst future internet architecture project. http://mobilityfirst.winlab.

rutgers.edu. Accessed: August 25, 2017.

[9] Network simulator 3 (NS-3). http://www.nsnam.org/. Accessed: February 18, 2016.

[10] ProjectCCNx: Content-Centric Networking CCNx Reference Implementation. https:
//github.com/ProjectCCNx/ccnx.

[11] The Content Name Collection. http://www.icn-names.net/. Accessed: April 8,
2016.

[12] The Metis CCNx Forwarder. https://github.com/parc/Metis. Accessed: May 14,
2016.

[13] Tor project website. https://www.torproject.org/.

[14] TRAPS performance evaluation code. https://github.com/chris-wood/

tsec-performance.

[15] URLBlacklist. http://urlblacklist.com.

294

https://github.com/parc/CCNx_Distillery
https://github.com/chris-wood/ccn-onpath-simulation-ccnsim
https://github.com/chris-wood/ccn-onpath-simulation-ccnsim
https://www.cryptopp.com
https://www.cryptopp.com/benchmarks.html
http://www.dfn.de/
http://www.dfn.de/dienstleistungen/dfninternet/noc/
http://www.dfn.de/dienstleistungen/dfninternet/noc/
https://github.com/chris-wood/fiblib
https://github.com/chris-wood/fiblib
http://mobilityfirst.winlab.rutgers.edu
http://mobilityfirst.winlab.rutgers.edu
http://www.nsnam.org/
https://github.com/ProjectCCNx/ccnx
https://github.com/ProjectCCNx/ccnx
http://www.icn-names.net/
https://github.com/parc/Metis
https://www.torproject.org/
https://github.com/chris-wood/tsec-performance
https://github.com/chris-wood/tsec-performance
http://urlblacklist.com

[16] WWW FAQs: What is the maximum length of a URL? https://boutell.com/

newfaq/misc/urllength.html. Accessed: April 8, 2016.

[17] January 2016. Accessed: August 25, 2017.

[18] Akamai’s State of the Inernet Security, Q1 2017 Execute Summary.
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q1-
2017-state-of-the-internet-security-executive-summary.pdf., 2017.

[19] libsodium: The sodium crypto library. https://github.com/jedisct1/libsodium,
2017.

[20] IETF QUIC Working Group, 2017 (Accessed June 24, 2017).

[21] M. Aamir and S. M. A. Zaidi. Denial-of-service in content centric (named data) net-
working: a tutorial and state-of-the-art survey. Security and Communication Networks,
8(11):2037–2059, 2015.

[22] G. Acs, M. Conti, P. Gasti, C. Ghali, and G. Tsudik. Cache privacy in named-data net-
working. In Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International
Conference on, pages 41–51. IEEE, 2013.

[23] G. Acs, M. Conti, P. Gasti, C. Ghali, G. Tsudik, and C. Wood. Privacy-aware caching
in information-centric networking. IEEE Transactions on Dependable and Secure Com-
puting, PP(99):1–1, 2017.

[24] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang. Interest flooding
attack and countermeasures in named data networking. In IFIP Networking Confer-
ence, 2013.

[25] A. Afanasyev, J. Shi, L. Wang, B. Zhang, and L. Zhang. Packet fragmentation in
NDN: why NDN uses hop-by-hop fragmentation. Technical report, NDN-0032, rev. 1,
2015.

[26] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang, Y. Huang,
J. P. Abraham, S. DiBenedetto, et al. NFD developer’s guide. Dept. Comput. Sci.,
Univ. California, Los Angeles, Los Angeles, CA, USA, Tech. Rep. NDN-0021, 2014.

[27] P. K. Agyapong and M. Sirbu. Economic incentives in information-centric networking:
implications for protocol design and public policy. IEEE Communications Magazine,
50(12), 2012.

[28] B. Ahlgren, M. D’Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz, B. Ohlman,
K. Pentikousis, O. Strandberg, R. Rembarz, and V. Vercellone. Design considerations
for a network of information. In Proceedings of the 2008 ACM CoNEXT Conference,
page 66. ACM, 2008.

[29] M. Aiash and J. Loo. A formally verified access control mechanism for information
centric networks. In e-Business and Telecommunications (ICETE), 2015 12th Inter-
national Joint Conference on, volume 4, pages 377–383. IEEE, 2015.

295

https://boutell.com/newfaq/misc/urllength.html
https://boutell.com/newfaq/misc/urllength.html
https://github.com/jedisct1/libsodium

[30] S. Al-Sheikh, M. Wählisch, and T. C. Schmidt. Revisiting countermeasures against ndn
interest flooding. In Proceedings of the 2nd International Conference on Information-
Centric Networking, pages 195–196. ACM, 2015.

[31] M. Almishari, P. Gasti, N. Nathan, and G. Tsudik. Optimizing bi-directional low-
latency communication in named data networking. ACM SIGCOMM Computer Com-
munication Review, 44(1):13–19, 2013.

[32] B. A. Alzahrani, M. J. Reed, and V. G. Vassilakis. Enabling z-filter updates for self-
routing denial-of-service resistant capabilities. In Computer Science and Electronic
Engineering Conference (CEEC), 2012 4th, pages 100–105. IEEE, 2012.

[33] B. A. Alzahrani, V. G. Vassilakis, and M. J. Reed. Key management in information
centric networking. International Journal of Computer Networks & Communications,
5(6):153, 2013.

[34] B. A. Alzahrani, V. G. Vassilakis, and M. J. Reed. Securing the forwarding plane
in information centric networks. In Computer Science and Electronic Engineering
Conference (CEEC), 2013 5th, pages 174–178. IEEE, 2013.

[35] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M. Freedman,
A. Haeberlen, Z. Ives, A. Krishnamurthy, et al. Nebula-a future internet that supports
trustworthy cloud computing. White Paper, 2010.

[36] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M. J. Freed-
man, A. Haeberlen, Z. G. Ives, A. Krishnamurthy, et al. The nebula future internet
architecture. Springer, 2013.

[37] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M. J. Freed-
man, A. Haeberlen, Z. G. Ives, A. Krishnamurthy, et al. A brief overview of the
NEBULA future internet architecture. ACM SIGCOMM Computer Communication
Review, 44(3), 2014.

[38] F. Angius, C. Westphal, M. Gerla, and G. Pau. Drop dead data-what to expect securing
data instead of channels. In Consumer Communications and Networking Conference
(CCNC), 2015 12th Annual IEEE, pages 267–275. IEEE, 2015.

[39] A. Araldo, M. Mangili, F. Martignon, and D. Rossi. Cost-aware caching: optimizing
cache provisioning and object placement in icn. In Global Communications Conference
(GLOBECOM), 2014 IEEE, pages 1108–1113. IEEE, 2014.

[40] A. Araldo, D. Rossi, and F. Martignon. Design and evaluation of cost-aware informa-
tion centric routers. In Proceedings of the 1st international conference on Information-
centric networking, 2014.

[41] A. Araldo, D. Rossi, and F. Martignon. Cost-aware caching: Caching more (costly
items) for less (isps operational expenditures). IEEE Transactions on Parallel and
Distributed Systems, 27(5):1316–1330, 2016.

296

[42] S. Arianfar, T. Koponen, B. Raghavan, and S. Shenker. On preserving privacy
in content-oriented networks. In Proceedings of the ACM SIGCOMM workshop on
Information-centric networking, pages 19–24. ACM, 2011.

[43] M. Arye, R. Kiefer, K. Super, E. Nordström, M. J. Freedman, E. Keller, T. Rondeau,
and J. M. Smith. Increasing network resilience through edge diversity in NEBULA.
ACM SIGMOBILE Mobile Computing and Communications Review, 16(3), 2012.

[44] M. R. Asghar, C. Bernardini, and B. Crispo. Protector: Privacy-preserving infor-
mation lookup in content-centric networks. In Communications (ICC), 2016 IEEE
International Conference on, pages 1–7. IEEE, 2016.

[45] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Transactions on Infor-
mation and System Security (TISSEC), 9(1):1–30, 2006.

[46] J.-P. Aumasson and D. J. Bernstein. Siphash: a fast short-input prf. In International
Conference on Cryptology in India, pages 489–508. Springer, 2012.

[47] F. Baker and P. Savola. RFC 3704: Ingress filtering for multihomed networks. Technical
report, 2004.

[48] M. Baugher, B. Davie, A. Narayanan, and D. Oran. Self-verifying names for read-only
named data. In INFOCOM Workshops, 2012.

[49] F. Begtasevic and P. Van Mieghem. Measurements of the hopcount in internet. In
PAM, 2001.

[50] A. Belenky and N. Ansari. IP traceback with deterministic packet marking. IEEE
communications letters, 7(4), 2003.

[51] W. Bellante, R. Vilardi, and D. Rossi. On netflix catalog dynamics and caching per-
formance. In Computer Aided Modeling and Design of Communication Links and Net-
works (CAMAD), 2013 IEEE 18th International Workshop on, pages 89–93. IEEE,
2013.

[52] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and secure
deduplication. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 296–312. Springer, 2013.

[53] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986: Uniform resource identifier
(URI): Generic syntax. 2005.

[54] D. Bernstein. Curvecp: Usable security for the internet. URL: http://curvecp.org,
2011.

[55] D. J. Bernstein. Curve25519: new diffie-hellman speed records. In International Work-
shop on Public Key Cryptography, pages 207–228. Springer, 2006.

297

[56] D. J. Bernstein. Dnscurve: Usable security for dns, 2009.

[57] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption.
In Security and Privacy, 2007. SP’07. IEEE Symposium on, pages 321–334. IEEE,
2007.

[58] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi. Check before storing: What is
the performance price of content integrity verification in lru caching? ACM SIGCOMM
Computer Communication Review, 43(3):59–67, 2013.

[59] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: new generation of memory-
hard functions for password hashing and other applications. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 292–302. IEEE, 2016.

[60] A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and D. Boneh. The case for ubiq-
uitous transport-level encryption. In USENIX Security Symposium, pages 403–418,
2010.

[61] A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and D. Boneh. Simple opportunistic
encryption. 2014.

[62] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryp-
tography. Advances in Cryptology—EUROCRYPT’98, pages 127–144, 1998.

[63] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM, 13(7), 1970.

[64] H. Böck, A. Zauner, S. Devlin, J. Somorovsky, and P. Jovanovic. Nonce-disrespecting
adversaries: Practical forgery attacks on gcm in tls. 2016.

[65] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 440–456. Springer, 2005.

[66] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In Ad-
vances in Cryptology—CRYPTO 2001, pages 213–229. Springer, 2001.

[67] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In Advances in Cryptology–CRYPTO 2005, pages
258–275. Springer, 2005.

[68] P. Brass. Advanced data structures. Cambridge University Press Cambridge, 2008.

[69] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and zipf-like
distributions: Evidence and implications. In INFOCOM’99. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 1, pages 126–134. IEEE, 1999.

[70] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey.
Internet mathematics, 1(4), 2004.

298

[71] J. Burke, P. Gasti, N. Nathan, and G. Tsudik. Securing instrumented environments
over content-centric networking: the case of lighting control and ndn. In Computer
Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on, pages
394–398. IEEE, 2013.

[72] J. Burke, P. Gasti, N. Nathan, and G. Tsudik. Secure sensing over named data network-
ing. In Network Computing and Applications (NCA), 2014 IEEE 13th International
Symposium on, pages 175–180. IEEE, 2014.

[73] G. Carofiglio, M. Gallo, and L. Muscariello. Joint hop-by-hop and receiver-driven
interest control protocol for content-centric networks. In Proceedings of the second
edition of the ICN workshop on Information-centric networking, pages 37–42. ACM,
2012.

[74] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino. Modeling data transfer in
content-centric networking. In Proceedings of the 23rd international teletraffic congress,
pages 111–118. International Teletraffic Congress, 2011.

[75] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino. Pending interest table sizing
in named data networking. In Proceedings of the 2nd International Conference on
Information-Centric Networking, pages 49–58. ACM, 2015.

[76] A. Chaabane, E. De Cristofaro, M. A. Kaafar, and E. Uzun. Privacy in content-oriented
networking: Threats and countermeasures. ACM SIGCOMM Computer Communica-
tion Review, 43(3):25–33, 2013.

[77] N. Chand, R. C. Joshi, and M. Misra. Cooperative caching in mobile ad hoc networks
based on data utility. Mobile Information Systems, 3(1):19–37, 2007.

[78] D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[79] H. Che, Z. Wang, and Y. Tung. Analysis and design of hierarchical web caching sys-
tems. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 3, pages 1416–1424. IEEE,
2001.

[80] T. Chen, K. Lei, and K. Xu. An encryption and probability based access control
model for named data networking. In Performance Computing and Communications
Conference (IPCCC), 2014 IEEE International, pages 1–8. IEEE, 2014.

[81] S. S. Chow, J. Weng, Y. Yang, and R. H. Deng. Efficient unidirectional proxy re-
encryption. In International Conference on Cryptology in Africa, pages 316–332.
Springer, 2010.

[82] CNN. Latest NSA leaks point finger at high-tech eavesdropping hub in UK, 2013.
http://www.cnn.com/2013/12/20/world/europe/nsa-leaks-uk/.

[83] B. Cohen. The BitTorrent protocol specification, 2008.

299

[84] A. Compagno, M. Conti, P. Gasti, L. V. Mancini, and G. Tsudik. Violating consumer
anonymity: Geo-locating nodes in named data networking. In Applied Cryptography
and Network Security, 2015.

[85] A. Compagno, M. Conti, P. Gasti, and G. Tsudik. Poseidon: Mitigating interest
flooding ddos attacks in named data networking. In 38th Conference on Local Computer
Networks (LCN), 2013.

[86] A. Compagno, M. Conti, C. Ghali, and G. Tsudik. To NACK or not to NACK? neg-
ative acknowledgments in information-centric networking. In The 24th International
Conference on Computer Communications and Networks (ICCCN), 2015.

[87] M. Conti, P. Gasti, and M. Teoli. A lightweight mechanism for detection of cache
pollution attacks in named data networking. Computer Networks, 57(16), 2013.

[88] A. Cooper, H. Tschofenig, B. Aboba, et al. Privacy considerations for internet proto-
cols. Internet Architecture Board, 2013.

[89] D. Cooper. RFC 3280: Internet X.509 public key infrastructure certificate and certifi-
cate revocation list (CRL) profile. 2008.

[90] R. S. da Silva and S. D. Zorzo. An access control mechanism to ensure privacy in
named data networking using attribute-based encryption with immediate revocation
of privileges. In Consumer Communications and Networking Conference (CCNC),
2015 12th Annual IEEE, pages 128–133. IEEE, 2015.

[91] A. Dabirmoghaddam, M. Dehghan, and J. Garcia-Luna-Aceves. Characterizing in-
terest aggregation in content-centric networks. In IFIP Networking Conference (IFIP
Networking) and Workshops, 2016, pages 449–457. IEEE, 2016.

[92] H. Dai, B. Liu, Y. Chen, and Y. Wang. On pending interest table in named data
networking. In Proceedings of the eighth ACM/IEEE symposium on Architectures for
networking and communications systems, pages 211–222. ACM, 2012.

[93] H. Dai, Y. Wang, J. Fan, and B. Liu. Mitigate ddos attacks in ndn by interest trace-
back. In Computer Communications Workshops (INFOCOM WKSHPS), 2013 IEEE
Conference on, pages 381–386. IEEE, 2013.

[94] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a type iii anony-
mous remailer protocol. In Security and Privacy, 2003. Proceedings. 2003 Symposium
on, pages 2–15. IEEE, 2003.

[95] C. Dannewitz, J. Golić, B. Ohlman, and B. Ahlgren. Secure naming for a network of
information. In INFOCOM IEEE Conference on Computer Communications Work-
shops, 2010.

[96] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and H. Karl. Network of
information (NetInf)–an information-centric networking architecture. Computer Com-
munications, 36(7), 2013.

300

[97] A. De Caro and V. Iovino. jpbc: Java pairing based cryptography. In Computers and
communications (ISCC), 2011 IEEE Symposium on, pages 850–855. IEEE, 2011.

[98] R. De La Briandais. File searching using variable length keys. In Western joint
computer conference, 1959.

[99] D. De Vleeschauwer and K. Laevens. Performance of caching algorithms for iptv on-
demand services. IEEE Transactions on broadcasting, 55(2):491–501, 2009.

[100] S. E. Deering. RFC 2460: Internet protocol, version 6 (IPv6) specification, 1998.

[101] M. Dehghan, B. Jiang, A. Dabirmoghaddam, and D. Towsley. On the analysis of caches
with pending interest tables. In Proceedings of the 2nd International Conference on
Information-Centric Networking, pages 69–78. ACM, 2015.

[102] F. Deng and D. Rafiei. Approximately detecting duplicates for streaming data using
stable bloom filters. In SIGMOD/PODS, 2006.

[103] R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-ciphertext secure proxy re-
encryption without pairings. In International Conference on Cryptology and Network
Security, pages 1–17. Springer, 2008.

[104] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest prefix matching using
bloom filters. In Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 201–212. ACM, 2003.

[105] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun. Andana: Anonymous named data
networking application. In NDSS, 2011.

[106] S. DiBenedetto and C. Papadopoulos. Mitigating poisoned content with forward-
ing strategy. In Computer Communications Workshops (INFOCOM WKSHPS), 2016
IEEE Conference on, pages 164–169. IEEE, 2016.

[107] T. Dierks. The transport layer security (tls) protocol version 1.2. 2008.

[108] M. Dworkin. Recommendation for block cipher modes of operation: Galois/Counter
Mode (GCM) and GMAC. US Department of Commerce, National Institute of Stan-
dards and Technology, 2007.

[109] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap: hardware/software ip
lookups with incremental updates. ACM SIGCOMM Computer Communication Re-
view, 34(2):97–122, 2004.

[110] A. Elabidi, G. Ben Ayed, S. Mettali Gammar, and F. Kamoun. Towards hiding fed-
erated digital identity: Stop-dissemination mechanism in content-centric networking.
In Proceedings of the 4th international conference on Security of information and net-
works, pages 239–242. ACM, 2011.

301

[111] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-
area web cache sharing protocol. IEEE/ACM Transactions on Networking (TON),
8(3):281–293, 2000.

[112] S. Farrell, E. Davies, and D. Kutscher. The NetInf protocol. IRTF Draft, Trinity
College Dublin, 2013.

[113] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen, and P. Hallam-Baker.
RFC 6920: Naming things with hashes, 2013.

[114] S. Farrell and H. Tschofenig. Pervasive monitoring is an attack. 2014.

[115] FD.io. Community icn (cicn). https://wiki.fd.io/view/Cicn. Accessed: December
2, 2017.

[116] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz. Measuring
HTTPS Adoption on the Web. In 26th USENIX Security Symposium (USENIX Secu-
rity 17). USENIX Association, 2017.

[117] P. Ferguson. RFC 2827: Network ingress filtering: Defeating denial of service attacks
which employ IP source address spoofing, 2000.

[118] I. Fette and A. Melnikov. RFC 6455: The websocket protocol. 2011.

[119] A. Fiat and M. Naor. Broadcast encryption. In Annual International Cryptology
Conference, pages 480–491. Springer, 1993.

[120] N. Fotiou, S. Arianfar, M. Särelä, and G. C. Polyzos. A framework for privacy analysis
of icn architectures. In Annual Privacy Forum, pages 117–132. Springer, 2014.

[121] N. Fotiou, G. Marias, and G. Polyzos. Towards a secure rendezvous network for future
publish/subscribe architectures. Future Internet-FIS 2010, pages 49–56, 2010.

[122] N. Fotiou, G. F. Marias, and G. C. Polyzos. Publish–subscribe internetworking security
aspects. In Trustworthy Internet, pages 3–15. Springer, 2011.

[123] N. Fotiou, G. F. Marias, and G. C. Polyzos. Access control enforcement delegation for
information-centric networking architectures. In Proceedings of the second edition of
the ICN workshop on Information-centric networking, 2012.

[124] N. Fotiou, P. Nikander, D. Trossen, G. C. Polyzos, et al. Developing information
networking further: From psirp to pursuit. In Broadnets, pages 1–13. Springer, 2010.

[125] N. Fotiou, D. Trossen, G. F. Marias, A. Kostopoulos, and G. C. Polyzos. Enhancing
information lookup privacy through homomorphic encryption. Security and Commu-
nication Networks, 7(12):2804–2814, 2014.

[126] N. Fotiou, D. Trossen, and G. C. Polyzos. Illustrating a publish-subscribe internet
architecture. Telecommunication Systems, pages 1–13, 2012.

302

https://wiki.fd.io/view/Cicn

[127] M. Franz, B. Meyer, and A. Pashalidis. Attacking unlinkability: The importance of
context. In N. Borisov and P. Golle, editors, Privacy Enhancing Technologies, volume
4776 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin Heidelberg,
2007.

[128] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymizing network layer.
In Proceedings of the 9th ACM conference on Computer and communications security,
pages 193–206. ACM, 2002.

[129] M. Fukushima, A. Tagami, and T. Hasegawa. Efficiently looking up non-aggregatable
name prefixes by reducing prefix seeking. In Computer Communications Workshops
(INFOCOM WKSHPS), 2013 IEEE Conference on, pages 340–344. IEEE, 2013.

[130] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and A. Mayer. Consistent, yet
anonymous, web access with lpwa. Communications of the ACM, 42(2):42–47, 1999.

[131] J. Garcia-Luna-Aceves. New directions in content centric networking. In Mobile Ad
Hoc and Sensor Systems (MASS), 2015 IEEE 12th International Conference on, pages
494–499. IEEE, 2015.

[132] J. Garcia-Luna-Aceves and M. M. Barijough. Content-centric networking using anony-
mous datagrams. In IFIP Networking Conference (IFIP Networking) and Workshops,
2016, pages 171–179. IEEE, 2016.

[133] J. Garcia-Luna-Aceves, A. Dabirmoghaddam, and M. Mirzazad-Barijoug. Understand-
ing optimal caching and opportunistic caching at” the edge” of information-centric
networks. In Proceedings of the 1st international conference on Information-centric
networking, 2014.

[134] J. Garcia-Luna-Aceves and M. Mirzazad-Barijough. Enabling correct interest forward-
ing and retransmissions in a content centric network. In ANCS, 2015.

[135] J. J. Garcia-Luna-Aceves. Name-based content routing in information centric net-
works using distance information. In Proceedings of the 1st international conference
on Information-centric networking, pages 7–16. ACM, 2014.

[136] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang. DoS and DDoS in named data network-
ing. In 22nd International Conference on Computer Communications and Networks
(ICCCN), 2013.

[137] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang. DoS DDoS in named-data network-
ing. In Proceedings of the International Conference on Computer Communications
and Networks (ICCCN), 2013.

[138] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. Advances in
cryptology—ASIACRYPT 2002, pages 149–155, 2002.

303

[139] C. Ghali, A. Narayanan, D. Oran, et al. Secure fragmentation for content-centric net-
works. In Network Computing and Applications (NCA), 2015 IEEE 14th International
Symposium on, pages 47–56. IEEE, 2015.

[140] C. Ghali, A. Narayanan, D. Oran, G. Tsudik, and C. A. Wood. Secure fragmentation
for content-centric networks (extended version). arXiv preprint arXiv:1405.2861, 2014.

[141] C. Ghali, M. A. Schlosberg, G. Tsudik, and C. A. Wood. Interest-based access con-
trol for content centric networks. In Proceedings of the 2Nd ACM Conference on
Information-Centric Networking, ACM-ICN ’15, pages 147–156, New York, NY, USA,
2015. ACM.

[142] C. Ghali, G. Tsudik, and E. Uzun. Needle in a haystack: Mitigating content poisoning
in named-data networking. In Proceedings of NDSS Workshop on Security of Emerging
Networking Technologies (SENT), 2014.

[143] C. Ghali, G. Tsudik, E. Uzun, and C. A. Wood. Closing the floodgate with state-
less content-centric networking. In 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pages 1–10, July 2017.

[144] C. Ghali, G. Tsudik, and C. A. Wood. Bead: Best effort autonomous deletion in
content-centric networking. In 2016 IFIP Networking Conference (IFIP Networking)
and Workshops, pages 180–188, May 2016.

[145] C. Ghali, G. Tsudik, and C. A. Wood. Network names in content-centric networking.
In Proceedings of the 3rd ACM Conference on Information-Centric Networking, ACM-
ICN ’16, pages 132–141, New York, NY, USA, 2016. ACM.

[146] C. Ghali, G. Tsudik, and C. A. Wood. (the futility of) data privacy in content-centric
networking. In Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic
Society, WPES ’16, pages 143–152, New York, NY, USA, 2016. ACM.

[147] C. Ghali, G. Tsudik, and C. A. Wood. Mitigating on-path adversaries in content-centric
networks. In 2017 IEEE 42nd Conference on Local Computer Networks (LCN), pages
27–34, Oct 2017.

[148] C. Ghali, G. Tsudik, and C. A. Wood. When encryption is not enough: Privacy
attacks in content-centric networking. In Proceedings of the 4th ACM Conference on
Information-Centric Networking, ICN ’17, pages 1–10, New York, NY, USA, 2017.
ACM.

[149] C. Ghali, G. Tsudik, C. A. Wood, and E. Yeh. Practical accounting in content-
centric networking. In Network Operations and Management Symposium (NOMS),
2016 IEEE/IFIP, pages 436–444. IEEE, 2016.

[150] Ghali, Cesar and Tsudik, Gene and Uzun, Ersin. Network-layer trust in named-data
networking. SIGCOMM Comput. Commun. Rev., 44(5):12–19, Oct. 2014.

304

[151] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker. Naming in
content-oriented architectures. In Proceedings of the ACM SIGCOMM workshop on
Information-centric networking, 2011.

[152] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox.
Information-centric networking: seeing the forest for the trees. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks, 2011.

[153] D. Goergen, T. Cholez, J. François, and T. Engel. A semantic firewall for content-
centric networking. In Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on, pages 478–484. IEEE, 2013.

[154] M. T. Goodrich. Efficient packet marking for large-scale IP traceback. In CCS, 2002.

[155] M. T. Goodrich. Leap-frog packet linking and diverse key distributions for improved
integrity in network broadcasts. In Security and Privacy, 2005 IEEE Symposium on,
pages 196–207. IEEE, 2005.

[156] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Proc. ACM CCS 2006, pages 89–98,
Oct.–Nov. 2006.

[157] M. Green and G. Ateniese. Identity-based proxy re-encryption. In Applied Cryptogra-
phy and Network Security, pages 288–306. Springer, 2007.

[158] D. Gross. Fundamentals of queueing theory. John Wiley & Sons, 2008.

[159] F. Guimarães, A. Rocha, C. Albuquerque, and I. Ribeiro. Modeling ndn pit to ana-
lyze the limits of timeout on the effectiveness of flooding attacks. In Computers and
Communication (ISCC), 2016 IEEE Symposium on, pages 1245–1250. IEEE, 2016.

[160] C. Gulcu and G. Tsudik. Mixing e-mail with babel. In Network and Distributed System
Security, 1996., Proceedings of the Symposium on, pages 2–16. IEEE, 1996.

[161] S. Gulley and V. Gopal. Haswell cryptographic performance. Intel Corporation, 2013.

[162] P. Gusev and J. Burke. Ndn-rtc: Real-time videoconferencing over named data net-
working. In Proceedings of the 2nd International Conference on Information-Centric
Networking, pages 117–126. ACM, 2015.

[163] B. Hamdane and S. G. El Fatmi. A credential and encryption based access control
solution for named data networking. In Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on, pages 1234–1237. IEEE, 2015.

[164] B. Hamdane, A. Serhrouchni, and S. G. El Fatmi. Access control enforcement in named
data networking. In Internet Technology and Secured Transactions (ICITST), 2013 8th
International Conference for, pages 576–581. IEEE, 2013.

305

[165] D. Han, A. Anand, F. R. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu,
A. Akella, D. G. Andersen, et al. XIA: Efficient support for evolvable internetworking.
In the 9th USENIX Symposium on Networked Systems Design and Implementation,
2012.

[166] S. Hares, Y. Rekhter, and T. Li. RFC 4271: A border gateway protocol 4 (BGP-4),
2006.

[167] C. L. Hedrick. Rfc 1058: Routing information protocol. Technical report, 1988.

[168] C. V. N. Index. Forecast and methodology, 2014-2019 white paper. Technical report,
Cisco, 2015.

[169] M. Ion, J. Zhang, and E. M. Schooler. Toward content-centric privacy in ICN:
Attribute-based encryption and routing. In Proc. ACM SIGCOMM ICN 2013, pages
39–40, Aug. 2013.

[170] R. Ishiyama, K. Tsukamoto, Y. Koizumi, H. Ohsaki, K. Hato, J. Murayama, and
M. Imase. On the effectiveness of diffusive content caching in content-centric net-
working. In Information and Telecommunication Technologies (APSITT), 2012 9th
Asia-Pacific Symposium on, pages 1–5. IEEE, 2012.

[171] T. Isshiki, M. H. Nguyen, and K. Tanaka. Proxy re-encryption in a stronger security
model extended from ct-rsa2012. In CT-RSA, pages 277–292. Springer, 2013.

[172] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard. Networking named content. In Proceedings of the 5th International Confer-
ence on Emerging networking experiments and technologies, 2009.

[173] C. Jayasundara, A. Nirmalathas, E. Wong, and N. Nadarajah. Popularity-aware
caching algorithm for video-on-demand delivery over broadband access networks. In
Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pages 1–5.
IEEE, 2010.

[174] W. John, M. Dusi, and K. C. Claffy. Estimating routing symmetry on single links by
passive flow measurements. In Proceedings of the 6th International Wireless Commu-
nications and Mobile Computing Conference, pages 473–478. ACM, 2010.

[175] H. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan. An empirical
study of namecoin and lessons for decentralized namespace design. In Workshop on
the Economics of Information Security (WEIS). Citeseer, 2015.

[176] A. Karami and M. Guerrero-Zapata. An anfis-based cache replacement method for
mitigating cache pollution attacks in named data networking. Computer Networks,
80:51–65, 2015.

[177] A. Karami and M. Guerrero-Zapata. A fuzzy anomaly detection system based on
hybrid pso-kmeans algorithm in content-centric networks. Neurocomputing, 149:1253–
1269, 2015.

306

[178] K. Katsaros, G. Xylomenos, and G. C. Polyzos. Multicache: An overlay architecture
for information-centric networking. Computer Networks, 55(4):936–947, 2011.

[179] K. V. Katsaros, L. Saino, I. Psaras, and G. Pavlou. On information exposure through
named content. In Heterogeneous Networking for Quality, Reliability, Security and
Robustness (QShine), 2014 10th International Conference on, pages 152–157. IEEE,
2014.

[180] J. Katz and Y. Lindell. Introduction to modern cryptography: principles and protocols.
CRC press, 2007.

[181] J. Katz and Y. Lindell. Introduction to modern cryptography. CRC Press, 2014.

[182] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. RFC 7296: Internet key
exchange protocol version 2 (IKEv2), 2014.

[183] H. Kazmi, H. Lakhani, A. Gehani, R. Tahir, and F. Zaffar. To route or to secure:
Tradeoffs in icns over manets. In Network Computing and Applications (NCA), 2016
IEEE 15th International Symposium on, pages 367–374. IEEE, 2016.

[184] S. Kent. RFC 4302: IP authentication header, 2005.

[185] S. Kent. RFC 4303: IP encapsulating security payload (ESP), 2005.

[186] S. Kent and R. Atkinson. Security architecture for the internet protocol, 1998.

[187] S. Khanvilkar and A. Khokhar. Virtual private networks: an overview with perfor-
mance evaluation. IEEE Communications Magazine, 42(10):146–154, 2004.

[188] D. Kim, S. Nam, J. Bi, and I. Yeom. Efficient content verification in named data
networking. In Proceedings of the 2nd International Conference on Information-Centric
Networking, pages 109–116. ACM, 2015.

[189] M. Kim, M.-O. Stehr, J. Kim, and S. Ha. An application framework for loosely coupled
networked cyber-physical systems. In Embedded and Ubiquitous Computing (EUC),
2010 IEEE/IFIP 8th International Conference on, pages 144–153. IEEE, 2010.

[190] G. Koloniari, N. Ntarmos, E. Pitoura, and D. Souravlias. One is enough: distributed
filtering for duplicate elimination. In Proceedings of the 20th ACM international con-
ference on Information and knowledge management, pages 433–442. ACM, 2011.

[191] D. Kondo, T. Silverston, H. Tode, T. Asami, and O. Perrin. Name anomaly detection
for icn. In Local and Metropolitan Area Networks (LANMAN), 2016 IEEE Interna-
tional Symposium on, pages 1–6. IEEE, 2016.

[192] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and
I. Stoica. A data-oriented (and beyond) network architecture. ACM SIGCOMM Com-
puter Communication Review, 37(4), 2007.

307

[193] H. Krawczyk, R. Canetti, and M. Bellare. RFC 2104: HMAC: Keyed-hashing for
message authentication, 1997.

[194] H. Krawczyk and P. Eronen. Hmac-based extract-and-expand key derivation function
(hkdf). Technical report, 2010.

[195] J. Kurihara, C. Wood, and E. Uzuin. An encryption-based access control framework
for content-centric networking. IFIP, 2015.

[196] T. Lauinger, N. Laoutaris, P. Rodriguez, T. Strufe, E. Biersack, and E. Kirda. Privacy
implications of ubiquitous caching in named data networking architectures. Technical
Report TR-iSecLab-0812-001, ISecLab, Tech. Rep., 2012.

[197] T. Lauinger, N. Laoutaris, P. Rodriguez, T. Strufe, E. Biersack, and E. Kirda. Privacy
risks in named data networking: what is the cost of performance? ACM SIGCOMM
Computer Communication Review, 42(5):54–57, 2012.

[198] K. Leung, E. W. Wong, and K.-H. Yeung. Designing efficient and robust caching algo-
rithms for streaming-on-demand services on the internet. World Wide Web, 7(3):297–
314, 2004.

[199] A. Lewko and B. Waters. Decentralizing attribute-based encryption. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
pages 568–588. Springer, 2011.

[200] B. Li, D. Huang, Z. Wang, and Y. Zhu. Attribute-based access control for icn naming
scheme. IEEE Transactions on Dependable and Secure Computing, 2016.

[201] B. Li, Z. Wang, D. Huang, and Y. Zhu. Toward privacy-preserving content access con-
trol for information centric networking. Technical report, ARIZONA STATE UNIV
TEMPE OFFICE OF RESEARCH AND SPONSORED PROJECT ADMINISTRA-
TION, 2014.

[202] Z. Li and J. Bi. Interest cash: an application-based countermeasure against interest
flooding for dynamic content in named data networking. In Proceedings of The Ninth
International Conference on Future Internet Technologies, page 2. ACM, 2014.

[203] K. Liang, Z. Liu, X. Tan, D. S. Wong, and C. Tang. A cca-secure identity-based
conditional proxy re-encryption without random oracles. In International Conference
on Information Security and Cryptology, pages 231–246. Springer, 2012.

[204] A. Lindgren, A. Doria, and O. Schelén. Probabilistic routing in intermittently con-
nected networks. ACM SIGMOBILE mobile computing and communications review,
7(3):19–20, 2003.

[205] V. Liu, D. Halperin, A. Krishnamurthy, and T. E. Anderson. F10: A fault-tolerant
engineered network. In the 10th USENIX Symposium on Networked Systems Design
and Implementation, 2013.

308

[206] V. Liu, S. Han, A. Krishnamurthy, and T. Anderson. Tor instead of IP. In Proceedings
of the 10th ACM Workshop on Hot Topics in Networks, 2011.

[207] X. Liu, W. Trappe, and Y. Zhang. Secure name resolution for identifier-to-locator
mappings in the global internet. In 22nd International Conference on Computer Com-
munications and Networks (ICCCN), 2013.

[208] R. Lychev, M. Schapira, and S. Goldberg. Rethinking security for internet routing.
Communications of the ACM, 59(10):48–57, 2016.

[209] P. Mahadevan, E. Uzun, S. Sevilla, and J. Garcia-Luna-Aceves. CCN-KRS: a key
resolution service for CCN. In Proceedings of the 1st international conference on
Information-centric networking, 2014.

[210] M. Mahdian, S. Arianfar, J. Gibson, and D. Oran. Mircc: Multipath-aware icn rate-
based congestion control. In Proceedings of the 2016 conference on 3rd ACM Confer-
ence on Information-Centric Networking, pages 1–10. ACM, 2016.

[211] M. Mangili, F. Martignon, and S. Paraboschi. A cache-aware mechanism to enforce
confidentiality, trackability and access policy evolution in content-centric networks.
Computer Networks, 76:126–145, 2015.

[212] E. Mannes, C. Maziero, L. C. Lassance, and F. Borges. Assessing the impact of crypto-
graphic access control solutions on multimedia delivery in information-centric networks.
In Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP, pages
427–435. IEEE, 2016.

[213] P. Martinez-Julia and A. F. Gomez-Skarmeta. Using identities to achieve enhanced
privacy in future content delivery networks. Computers & Electrical Engineering,
38(2):346–355, 2012.

[214] P. Martinez-Julia, A. F. Gomez-Skarmeta, J. Girao, and A. Sarma. Protecting digital
identities in future networks. In Future Network & Mobile Summit (FutureNetw), 2011,
pages 1–8. IEEE, 2011.

[215] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang. ndnSIM 2.0: A new version
of the NDN simulator for NS-3. Technical report, NDN-0028, 2015.

[216] G. Mauri, R. Raspadori, M. Gerlay, and G. Verticale. Exploiting information centric
networking to build an attacker-controlled content delivery network. In Ad Hoc Net-
working Workshop (MED-HOC-NET), 2015 14th Annual Mediterranean, pages 1–6.
IEEE, 2015.

[217] G. Mauri and G. Verticale. Distributing key revocation status in named data network-
ing. In Advances in Communication Networking. 2013.

[218] J. McCann, J. Mogul, and S. E. Deering. RFC 1981: Path MTU discovery for IP
version 6, 1996.

309

[219] S. Misra, R. Tourani, and N. E. Majd. Secure content delivery in information-centric
networks: Design, implementation, and analyses. In Proceedings of the 3rd ACM
SIGCOMM Workshop on Information-centric Networking, pages 73–78. ACM, 2013.

[220] S. Misra, R. Tourani, F. Natividad, T. Mick, N. E. Majd, and H. Huang. Accconf:
An access control framework for leveraging in-network cached data in the icn-enabled
wireless edge. IEEE Transactions on Dependable and Secure Computing, 2017.

[221] A. Mohaisen, H. Mekky, X. Zhang, H. Xie, and Y. Kim. Timing attacks on access
privacy in information centric networks and countermeasures. IEEE Transactions on
Dependable and Secure Computing, 12(6), 2015.

[222] A. Mohaisen, X. Zhang, M. Schuchard, H. Xie, and Y. Kim. Protecting access privacy
of cached contents in information centric networks. In Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications security, 2013.

[223] K. Moriarty and A. Morton. Effect of Pervasive Encryption on Operators. Internet-
Draft draft-mm-wg-effect-encrypt-11, Internet Engineering Task Force, Apr. 2017.
Work in Progress.

[224] D. R. Morrison. Patricia—practical algorithm to retrieve information coded in al-
phanumeric. Journal of the ACM (JACM), 15(4):514–534, 1968.

[225] M. Mosko, I. Solis, and C. A. Wood. CCNx Messages in TLV Format. Internet-Draft
draft-irtf-icnrg-ccnxmessages-06, Internet Engineering Task Force, Oct. 2017. Work in
Progress.

[226] M. Mosko, I. Solis, and C. A. Wood. Content-centric networking-architectural overview
and protocol description. arXiv preprint arXiv:1706.07165, 2017.

[227] M. Mosko, E. Uzun, and C. A. Wood. CCNx Key Exchange Protocol Version 1.0.
Internet-Draft draft-wood-icnrg-ccnxkeyexchange-02, Internet Engineering Task Force,
July 2017. Work in Progress.

[228] M. Mosko, E. Uzun, and C. A. Wood. Mobile sessions in content-centric networks.
IFIP Networking, 2017.

[229] M. Mosko and C. Wood. The CCNx URI Scheme. Internet-Draft draft-mosko-icnrg-
ccnxurischeme-01, Internet Engineering Task Force, Apr. 2016. Work in Progress.

[230] M. Mosko and C. A. Wood. Secure fragmentation for content centric networking. In
Mobile Ad Hoc and Sensor Systems (MASS), 2015 IEEE 12th International Conference
on, pages 506–512. IEEE, 2015.

[231] S. Mukherjee, A. Baid, I. Seskar, and D. Raychaudhuri. Network-assisted multihoming
in the mobilityfirst future internet architecture. Technical report, Rutgers University,
2013.

310

[232] S. Murdoch and G. Danezis. Low-cost traffic analysis of tor. In Security and Privacy,
2005 IEEE Symposium on, pages 183–195, May 2005.

[233] L. Muscariello, G. Carofiglio, and M. Gallo. Bandwidth and storage sharing per-
formance in information centric networking. In Proceedings of the ACM SIGCOMM
workshop on Information-centric networking, pages 26–31. ACM, 2011.

[234] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. RFC 2560: Online
certificate status protocol - OCSP. 1999.

[235] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and A. Seehra. Verifying
and enforcing network paths with ICING. In Proceedings of the 7th Conference on
emerging Networking EXperiments and Technologies, 2011.

[236] T. Narten, R. Draves, and S. Krishnan. RFC 4941: Privacy extensions for stateless
address autoconfiguration in IPv6. 2007.

[237] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving en-
crypted databases. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 644–655. ACM, 2015.

[238] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M. Munafò, K. Pa-
pagiannaki, and P. Steenkiste. The cost of the s in https. In Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments and Tech-
nologies, pages 133–140. ACM, 2014.

[239] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R. López, K. Pa-
pagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste. Multi-context tls (mctls):
Enabling secure in-network functionality in tls. In ACM SIGCOMM Computer Com-
munication Review, volume 45, pages 199–212. ACM, 2015.

[240] S. C. Nelson, G. Bhanage, and D. Raychaudhuri. GSTAR: generalized storage-aware
routing for mobilityfirst in the future mobile internet. In Proceedings of the 6th inter-
national workshop on MobiArch, 2011.

[241] Netflix. Internet Connection Speed Recommendations. https://help.netflix.com/
en/node/306.

[242] T. Nguyen, R. Cogranne, and G. Doyen. An optimal statistical test for robust detection
against interest flooding attacks in ccn. In Integrated Network Management (IM), 2015
IFIP/IEEE International Symposium on, pages 252–260. IEEE, 2015.

[243] T. N. Nguyen, R. Cogranne, G. Doyen, and F. Retraint. Detection of interest flooding
attacks in named data networking using hypothesis testing. In Information Forensics
and Security (WIFS), 2015 IEEE International Workshop on, pages 1–6. IEEE, 2015.

[244] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539, Oct.
2015.

311

https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306

[245] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko, J. Rexford, and M. J.
Freedman. Serval: An end-host stack for service-centric networking. In Proceedings of
the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

[246] I. O. Nunes, G. Tsudik, and C. A. Wood. Namespace tunnels in content-centric net-
works. In 2017 IEEE 42nd Conference on Local Computer Networks (LCN), pages
35–42, Oct 2017.

[247] PARC. ccns3Sim: CCNx Module for NS3, 2017.

[248] H. Park, I. Widjaja, and H. Lee. Detection of cache pollution attacks using randomness
checks. In Communications (ICC), 2012 IEEE International Conference on, pages
1096–1100. IEEE, 2012.

[249] C. Percival. Stronger key derivation via sequential memory-hard functions. Self-
published, pages 1–16, 2009.

[250] D. Perino, M. Varvello, L. Linguaglossa, R. Laufer, and R. Boislaigue. Caesar: A
content router for high-speed forwarding on content names. In Proceedings of the tenth
ACM/IEEE symposium on Architectures for networking and communications systems,
pages 137–148. ACM, 2014.

[251] S. Peter, U. Javed, Q. Zhang, D. Woos, T. Anderson, and A. Krishnamurthy. One
tunnel is (often) enough. In Proceedings of the 2014 ACM conference on SIGCOMM,
2014.

[252] W. M. Petullo, X. Zhang, J. A. Solworth, D. J. Bernstein, and T. Lange. Minimalt:
minimal-latency networking through better security. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 425–438. ACM,
2013.

[253] B. Pinkas. Cryptographic techniques for privacy-preserving data mining. ACM
SIGKDD Explorations Newsletter, 4(2):12–19, 2002.

[254] B. Pinkas and T. Sander. Securing passwords against dictionary attacks. In Proceedings
of the 9th ACM conference on Computer and communications security, pages 161–170.
ACM, 2002.

[255] J. Postel. RFC 768 user datagram protocol, 1980.

[256] J. Postel. RFC 791: Internet protocol, 1981.

[257] J. Postel. RFC 792: Internet control message protocol, 1981.

[258] J. Postel. RFC 793: Transmission control protocol, 1981.

[259] T. Przygienda. RFC 3359: Reserved type, length and value (tlv) codepoints in inter-
mediate system to intermediate system, 2002.

312

[260] W. Quan, C. Xu, A. V. Vasilakos, J. Guan, H. Zhang, and L. A. Grieco. Tb2f: Tree-
bitmap and bloom-filter for a scalable and efficient name lookup in content-centric
networking. In Networking conference, 2014 IFIP, pages 1–9. IEEE, 2014.

[261] M. Raykova, H. Lakhani, H. Kazmi, and A. Gehani. Decentralized authorization and
privacy-enhanced routing for information-centric networks. In Proceedings of the 31st
Annual Computer Security Applications Conference, pages 31–40. ACM, 2015.

[262] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security (TISSEC), 1(1), 1998.

[263] R. Rembarz, D. Catrein, and J. Sachs. Private domains in networks of information. In
Communications Workshops, 2009. ICC Workshops 2009. IEEE International Con-
ference on, pages 1–5. IEEE, 2009.

[264] Y. Ren, J. Li, S. Shi, L. Li, and X. Chang. An interest control protocol for named data
networking based on explicit feedback. In Proceedings of the Eleventh ACM/IEEE
Symposium on Architectures for networking and communications systems, pages 199–
200. IEEE Computer Society, 2015.

[265] E. Renault, A. Ahmad, and M. Abid. Toward a security model for the future net-
work of information. In Proceedings of the 4th International Conference on Ubiquitous
Information Technologies & Applications (ICUT), 2009.

[266] E. Renault, A. Ahmad, and M. Abid. Access control to objects and their description
in the future network of information. JIPS, 6(3):359–374, 2010.

[267] M. Rennhard and B. Plattner. Introducing morphmix: peer-to-peer based anonymous
internet usage with collusion detection. In Proceedings of the 2002 ACM workshop on
Privacy in the Electronic Society, pages 91–102. ACM, 2002.

[268] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Internet-Draft
draft-ietf-tls-tls13-14, Internet Engineering Task Force, July 2016. Work in Progress.

[269] G. F. Riley and T. R. Henderson. The ns-3 network simulator. Modeling and tools for
network simulation, pages 15–34, 2010.

[270] E. J. Rosensweig, J. Kurose, and D. Towsley. Approximate models for general cache
networks. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[271] C. E. Rothenberg, P. Jokela, P. Nikander, M. Sarela, and J. Ylitalo. Self-routing denial-
of-service resistant capabilities using in-packet bloom filters. In Computer Network
Defense (EC2ND), 2009 European Conference on, pages 46–51. IEEE, 2009.

[272] N. Rozhnova and S. Fdida. An extended hop-by-hop interest shaping mechanism for
content-centric networking. In Global Communications Conference (GLOBECOM),
2014 IEEE, pages 1–7. IEEE, 2014.

313

[273] L. Saino, C. Cocora, and G. Pavlou. Cctcp: A scalable receiver-driven congestion
control protocol for content centric networking. In Communications (ICC), 2013 IEEE
International Conference on, pages 3775–3780. IEEE, 2013.

[274] H. Salah and T. Strufe. Evaluating and mitigating a collusive version of the inter-
est flooding attack in ndn. In Computers and Communication (ISCC), 2016 IEEE
Symposium on, pages 938–945. IEEE, 2016.

[275] H. Salah, J. Wulfheide, and T. Strufe. Lightweight coordinated defence against in-
terest flooding attacks in ndn. In Computer Communications Workshops (INFOCOM
WKSHPS), 2015 IEEE Conference on, pages 103–104. IEEE, 2015.

[276] S. Schiffner and S. Clauß. Using linkability information to attack mix-based anonymity
services. In Proceedings of the 9th International Symposium on Privacy Enhancing
Technologies, PETS ’09, pages 94–107, Berlin, Heidelberg, 2009. Springer-Verlag.

[277] T. C. Schmidt, S. Wölke, N. Berg, and M. Wählisch. Let’s collect names: How panini
limits fib tables in name based routing. In IFIP Networking Conference (IFIP Net-
working) and Workshops, 2016, pages 458–466. IEEE, 2016.

[278] S. C. Seo, T. Kim, and M. Jang. A privacy-preserving approach in content centric.
In Consumer Communications and Networking Conference (CCNC), 2014 IEEE 11th,
pages 866–871. IEEE, 2014.

[279] A. Serjantov. On the anonymity of anonymity systems. University of Cambridge,
Computer Laboratory, Technical Report, (UCAM-CL-TR-604), 2004.

[280] I. Seskar, K. Nagaraja, S. Nelson, and D. Raychaudhuri. Mobilityfirst future internet
architecture project. In Proceedings of the 7th Asian Internet Engineering Conference,
2011.

[281] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[282] W. Shang, Y. Yu, T. Liang, B. Zhang, and L. Zhang. Ndn-ace: Access control for con-
strained environments over named data networking. Technical report, NDN Project,
Tech. Rep. NDN-0036, Revision 1, 2015.

[283] J. Shao and Z. Cao. Cca-secure proxy re-encryption without pairings. In Public Key
Cryptography, volume 5443, pages 357–376. Springer, 2009.

[284] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blindbox: Deep packet inspec-
tion over encrypted traffic. In ACM SIGCOMM Computer Communication Review,
volume 45, pages 213–226. ACM, 2015.

[285] K. Sklower. A tree-based packet routing table for berkeley unix. In USENIX Winter,
volume 1991, pages 93–99, 1991.

[286] Skype. http://www.skype.com/.

314

http://www.skype.com/

[287] D. Smetters, P. Golle, and J. Thornton. CCNx access control specifications. Technical
report, Palo Alto Reserach Center, 2010.

[288] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, S. T. Kent,
and W. T. Strayer. Hash-based IP traceback. ACM SIGCOMM Computer Communi-
cation Review, 31(4), 2001.

[289] W. So, A. Narayanan, and D. Oran. Named data networking on a router: Fast and
dos-resistant forwarding with hash tables. In Proceedings of the ninth ACM/IEEE
symposium on Architectures for networking and communications systems, pages 215–
226. IEEE Press, 2013.

[290] W. So, A. Narayanan, D. Oran, and M. Stapp. Named data networking on a router:
forwarding at 20gbps and beyond. In ACM SIGCOMM Computer Communication
Review, volume 43, pages 495–496. ACM, 2013.

[291] Sodium. Public-key authenticated encryption. https://download.libsodium.org/

doc/public-key_cryptography/authenticated_encryption.html, 2017.

[292] S. Son and V. Shmatikov. The hitchhiker’s guide to dns cache poisoning. Security and
Privacy in Communication Networks, pages 466–483, 2010.

[293] H. Song, F. Hao, M. Kodialam, and T. Lakshman. Ipv6 lookups using distributed and
load balanced bloom filters for 100gbps core router line cards. In INFOCOM 2009,
IEEE, pages 2518–2526. IEEE, 2009.

[294] J. Song, R. Poovendran, J. Lee, and T. Iwata. The aes-cmac algorithm. Technical
report, 2006.

[295] T. Song, H. Yuan, P. Crowley, and B. Zhang. Scalable name-based packet forward-
ing: From millions to billions. In Proceedings of the 2nd International Conference on
Information-centric Networking, pages 19–28. ACM, 2015.

[296] J. W. Stewart III. BGP4: inter-domain routing in the Internet. Addison-Wesley
Longman, 1998.

[297] R. Stone. Centertrack: An ip overlay network for tracking dos floods. In USENIX
Security Symposium, volume 21, page 114, 2000.

[298] K. Suksomboon, Y. Ji, M. Koibuchi, K. Fukuda, S. Abe Nakamura Motonori, M. Aoki,
S. Urushidani, and S. Yamada. On incentive-based inter-domain caching for content
delivery in future internet architectures. In Proceedings of the Asian Internet Engi-
neeering Conference, pages 1–8. ACM, 2012.

[299] P. Syverson. A taxonomy of replay attacks [cryptographic protocols]. In CSFW, 1994.

[300] P. Syverson, R. Dingledine, and N. Mathewson. Tor: the second-generation onion
router. In Usenix Security, 2004.

315

https://download.libsodium.org/doc/public-key_cryptography/authenticated_encryption.html
https://download.libsodium.org/doc/public-key_cryptography/authenticated_encryption.html

[301] W. Szpankowski. Patricia tries again revisited. JACM, 1990.

[302] J. Tang, Z. Zhang, Y. Liu, and H. Zhang. Identifying interest flooding in named data
networking. In Green Computing and Communications (GreenCom), 2013 IEEE and
Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE
Cyber, Physical and Social Computing, pages 306–310. IEEE, 2013.

[303] F. Tao, X. Fei, L. Ye, and F. J. Li. Secure network coding-based named data network
mutual anonymity communication protocol. In Proceedings of International Conference
on Electrical, Computer Engineering and Electronics (ICECEE), pages 1107–1114,
2015.

[304] S. Tarkoma, M. Ain, and K. Visala. The publish/subscribe internet routing paradigm
(psirp): Designing the future internet architecture. In Future Internet Assembly, pages
102–111, 2009.

[305] R. Tourani, T. Mick, S. Misra, and G. Panwar. Security, privacy, and access control
in information-centric networking: A survey. arXiv preprint arXiv:1603.03409, 2016.

[306] R. Tourani, S. Misra, J. Kliewer, S. Ortegel, and T. Mick. Catch me if you can: A
practical framework to evade censorship in information-centric networks. In Proceed-
ings of the 2nd International Conference on Information-Centric Networking, pages
167–176. ACM, 2015.

[307] C. Tschudin and C. A. Wood. File-Like ICN Collection (FLIC). Internet-Draft draft-
irtf-icnrg-flic-00, Internet Engineering Task Force, June 2017. Work in Progress.

[308] C. Tsilopoulos, G. Xylomenos, and Y. Thomas. Reducing forwarding state in content-
centric networks with semi-stateless forwarding. In INFOCOM, 2014 Proceedings
IEEE, pages 2067–2075. IEEE, 2014.

[309] G. Tsudik, E. Uzun, and C. A. Wood. AC3N: Anonymous communication in content-
centric networking. In 13th IEEE Annual Consumer Communications Networking
Conference (CCNC), 2016.

[310] W.-G. Tzeng and Z.-J. Tzeng. A public-key traitor tracing scheme with revocation
using dynamic shares. In Proc. PKC 2001, pages 207–224, Feb. 2001.

[311] A. Vahdat, D. Becker, et al. Epidemic routing for partially connected ad hoc networks.
2000.

[312] M. Varvello, D. Perino, and J. Esteban. Caesar: A content router for high speed
forwarding. In Proceedings of the second edition of the ICN workshop on Information-
centric networking, pages 73–78. ACM, 2012.

[313] A. Venkataramani, A. Sharma, X. Tie, H. Uppal, D. Westbrook, J. Kurose, and D. Ray-
chaudhuri. Design requirements of a global name service for a mobility-centric, trust-
worthy internetwork. In 5th International Conference on Communication Systems and
Networks (COMSNETS), 2013.

316

[314] M. Virgilio, G. Marchetto, and R. Sisto. Pit overload analysis in content centric
networks. In Proceedings of the 3rd ACM SIGCOMM workshop on Information-centric
networking, pages 67–72. ACM, 2013.

[315] M. Wählisch, T. C. Schmidt, and M. Vahlenkamp. Backscatter from the data plane–
threats to stability and security in information-centric network infrastructure. Com-
puter Networks, 57(16):3192–3206, 2013.

[316] C. Wang and J. W. Byers. Incentivizing efficient content placement in a global content
oriented network. Technical report, Technical Report BUCS-TR-2012-012, Boston
University, 2012.

[317] J. Wang and B. Lang. An efficient kp-abe scheme for content protection in information-
centric networking. In Computers and Communication (ISCC), 2016 IEEE Symposium
on, pages 830–837. IEEE, 2016.

[318] K. Wang, J. Chen, H. Zhou, and Y. Qin. Content-centric networking: Effect of content
caching on mitigating dos attack. International Journal of Computer Science Issues,
9(6):43–52, 2012.

[319] K. Wang, J. Chen, H. Zhou, Y. Qin, and H. Zhang. Modeling denial-of-service against
pending interest table in named data networking. International Journal of Communi-
cation Systems, 27(12):4355–4368, 2014.

[320] K. Wang, H. Zhou, H. Luo, J. Guan, Y. Qin, and H. Zhang. Detecting and mitigat-
ing interest flooding attacks in content-centric network. Security and Communication
Networks, 7(4):685–699, 2014.

[321] K. Wang, H. Zhou, Y. Qin, J. Chen, and H. Zhang. Decoupling malicious interests from
pending interest table to mitigate interest flooding attacks. In Globecom Workshops
(GC Wkshps), 2013 IEEE, pages 963–968. IEEE, 2013.

[322] K. Wang, H. Zhou, Y. Qin, and H. Zhang. Cooperative-filter: countering interest
flooding attacks in named data networking. Soft Computing, 18(9):1803–1813, 2014.

[323] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and Y. Chen. Scalable name lookup
in ndn using effective name component encoding. In Distributed Computing Systems
(ICDCS), 2012 IEEE 32nd International Conference on, pages 688–697. IEEE, 2012.

[324] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu, and Q. Dong. Namefilter:
Achieving fast name lookup with low memory cost via applying two-stage bloom filters.
In INFOCOM, 2013 Proceedings IEEE, pages 95–99. IEEE, 2013.

[325] Y. Wang, N. Rozhnova, A. Narayanan, D. Oran, and I. Rhee. An improved hop-by-hop
interest shaper for congestion control in named data networking. In ACM SIGCOMM
Computer Communication Review, volume 43, pages 55–60. ACM, 2013.

317

[326] Y. Wang, D. Tai, T. Zhang, J. Lu, B. Xu, H. Dai, and B. Liu. Greedy name lookup
for named data networking. ACM SIGMETRICS Performance Evaluation Review,
41(1):359–360, 2013.

[327] Y. Wang, M. Xu, Z. Feng, Q. Li, and Q. Li. Session-based access control in information-
centric networks: Design and analyses. In Performance Computing and Communica-
tions Conference (IPCCC), 2014 IEEE International, pages 1–8. IEEE, 2014.

[328] W. Wong, F. Verdi, and M. F. Magalhães. A security plane for publish/subscribe based
content oriented networks. In Proceedings of the 2008 ACM CoNEXT Conference,
page 45. ACM, 2008.

[329] C. A. Wood. CCN eavesdropper simulator, 2017.

[330] C. A. Wood. Protecting the long tail: Transparent packet security in content-centric
networks. In IFIP Networking, 2017.

[331] C. A. Wood and E. Uzun. Flexible end-to-end content security in CCN. In Consumer
Communications and Networking Conference (CCNC), 2014 IEEE 11th, pages 858–
865. IEEE, 2014.

[332] S. Wood, J. Mathewson, J. Joy, M.-O. Stehr, M. Kim, A. Gehani, M. Gerla, H. Sad-
jadpour, and J. Garcia-Luna-Aceves. Iceman: A practical architecture for situational
awareness at the network edge. In Logic, Rewriting, and Concurrency, pages 617–631.
Springer, 2015.

[333] M. K. Wright, M. Adler, B. N. Levine, and C. Shields. The predecessor attack: An
analysis of a threat to anonymous communications systems. ACM Transactions on
Information and System Security (TISSEC), 7(4):489–522, 2004.

[334] D. Wu, Z. Xu, B. Chen, and Y. Zhang. What if routers are malicious? mitigating
content poisoning attack in ndn. In Trustcom/BigDataSE/I SPA, 2016 IEEE, pages
481–488. IEEE, 2016.

[335] M. Xie, I. Widjaja, and H. Wang. Enhancing cache robustness for content-centric
networking. In INFOCOM, 2012 Proceedings IEEE, pages 2426–2434. IEEE, 2012.

[336] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang. A case for
stateful forwarding plane. Computer Communications, 36(7):779–791, 2013.

[337] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang. Adaptive forwarding in named
data networking. ACM SIGCOMM computer communication review, 42(3), 2012.

[338] Y. Yu, A. Afanasyev, and L. Zhang. Name-based access control. Relatório Técnico
TR NDN-0034, University of California, Los Angeles, Los Angeles, 2015.

[339] Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang. An endorsement-based key management
system for decentralized ndn chat application. Technical Report NDN-0023, 2014.

318

[340] H. Yuan, T. Song, and P. Crowley. Scalable ndn forwarding: Concepts, issues and prin-
ciples. In Computer Communications and Networks (ICCCN), 2012 21st International
Conference on, pages 1–9. IEEE, 2012.

[341] B. Zantout and R. Haraty. I2p data communication system. In ICN 2011, The Tenth
International Conference on Networks, pages 401–409, 2011.

[342] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang,
G. Tsudik, D. Massey, C. Papadopoulos, et al. Named data networking (NDN) project.
Technical report, NDN-0001, Xerox Palo Alto Research Center-PARC, 2010.

[343] L. Zhang and Y. Guan. Detecting click fraud in pay-per-click streams of online adver-
tising networks. In ICDCS, 2008.

[344] X. Zhang, K. Chang, H. Xiong, Y. Wen, G. Shi, and G. Wang. Towards name-based
trust and security for content-centric network. In Network Protocols (ICNP), 2011
19th IEEE International Conference on, pages 1–6. IEEE, 2011.

[345] Y. Zhang, H. Zhang, and L. Zhang. Kite: A mobility support scheme for ndn. In Pro-
ceedings of the 1st international conference on Information-centric networking, pages
179–180. ACM, 2014.

[346] Q. Zheng, G. Wang, R. Ravindran, and A. Azgin. Achieving secure and scalable data
access control in information-centric networking. In Communications (ICC), 2015
IEEE International Conference on, pages 5367–5373. IEEE, 2015.

[347] L. Zhu, Z. Hu, J. Heidemann, D. Wessels, A. Mankin, and N. Somaiya. Connection-
oriented dns to improve privacy and security (extended). USC/Information Sciences
Institute, Tech. Rep. ISI-TR-2015-695, Feb, 2015.

[348] Z. Zhu and A. Afanasyev. Let’s chronosync: Decentralized dataset state synchro-
nization in named data networking. In Network Protocols (ICNP), 2013 21st IEEE
International Conference on, pages 1–10. IEEE, 2013.

319

Glossary

anonymizing router An application that encrypts (decrypts) and forwards content (inter-

ests). 148

application-layer name A data name assigned by producers and used by consumers. 239

CBAC Access control enforced by content payload encryption.. 36

circuit A series of anonymizing routers. 150

consumer An entity that fetches content with interest messages. 25, 320, 321

content A CCN piece of data addressed using a unique name. 25, 26, 320, 321

FLIC A specific type of manifest whose payload contains collections of pointers to other

contents, along with additional metadata about pointer collection. 31

Forwarding Information Base (FIB) A data structure that maps name prefixes to router

interface identifiers using longest-prefix match. 27

gateway An entity that processes and translates messages from one domain to another,

e.g., by encrypting plaintext interests to encrypted and tunneled interests. 169

IBAC Access control enforced by interest verification. 39

interest A message sent by CCN consumers to request content. 26, 320, 321

320

manifest A content whose payload contains pointers, e.g., (name, KeyId, ContentId) tuples,

to other contents. 31, 320

name A URI-like hierarchical identifier. 25, 321

network name A wire-encoded name carried in interests and content objects. 239

path A sequence of routers over which specific messages traverse. 149

Pending Interest Table (PIT) A cache for interests that stores interest messages, their

arrival interfaces, and additional auxiliary information. 27

principal An entity associated with an identity, e.g., consumer node, consumer application,

or person. 36

producer An entity that produces (publish) content under a given routable prefix. 25, 321

replay attack A network attacks where adversaries replay legitimate and valid packets in

order to gain access to restricted resources or leak private information. 39

routable prefix A minimal name prefix needed to reach a specific producer. 25, 321

router An entity that forward interests and content objects between consumers and pro-

ducers. 26

trace A sequence of router IDs corresponding to a network path. 77, 82

tunnel An encrypted channel between two endpoints through which messages are totally

encapsulated. 169

321

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT
	Introduction
	The Internet and Modern Network Stacks

	Next-Generation Networks
	Future Internet Architecture Candidates
	eXpressive Internet Architecture
	MobilityFirst
	Nebula

	Information-Centric Networking
	Data-Oriented (and Beyond) Network Architecture
	Network of Information
	ICEMAN
	PURSUIT

	Content-Centric Networking
	Overview
	Forwarding and Matching Semantics
	Messages and Packet Formats
	Named Data Networking Differences
	Security and Privacy Problems
	Content Poisoning
	Access Control
	Privacy
	Denial of Service

	Access Control
	Content-Based Access Control
	Proxy Re-Encryption Overview
	PRE-AC System Design
	PRE-AC Protection
	Prototype Implementation

	Interest-Based Access Control
	Threat Model
	Name Obfuscation Variants
	Security Considerations
	Analysis and Evaluation

	Best Effort Autonomous Deletion in CCN
	BEAD Requirements
	Authenticating Deletion Requests
	Routing Deletion Requests
	BEAD Analysis
	Performance Assessment
	Enabling Content Deletion

	Privacy
	Data Privacy Challenges
	Data Privacy Pitfalls
	Eavesdropping Adversaries
	On-Path Honest-but-Curious Adversaries
	Privacy in Practice
	Privacy and Auxiliary Information

	Static Content and Frequency Analysis Attacks
	Threat Model
	Frequency Analysis Attack Overview
	Simulation Methodology
	Global Eavesdropping Adversaries
	Distributed Eavesdropping Adversaries
	Probing Popularity Inference
	Attack Ramifications

	AC3N: Efficient Anonymous Communication
	Anonymity Overview and Threat Model
	System Design
	Performance Assessment
	Security and Correctness Analysis

	CCVPN: Namespace Tunnels
	System Design
	Threat Model and Analysis
	Performance Assessment
	Implementation and Performance Assessment

	Transparent Packet Security
	Separating Privacy and Confidentiality
	Threat Model
	Transparent Packet Security
	Security Analysis
	Performance Assessment

	Availability
	A Stateless Data Plane
	Assessing the PIT
	Stateless CCN using Backwards Routable Names
	Architecture Evaluation
	Performance Assessment

	Efficient and Opaque Network Names
	Data Plane Attacks
	Network Names
	Network Name Integration and Ramifications
	Experimental and Statistical Analysis
	Performance Assessment
	Security Considerations

	Network-Layer Integrity Checks
	Content Poisoning and Namespace Arbitration
	Threat Model
	Integrity Zones
	Security Analysis
	Performance Assessment
	Discussion and Challenges

	Conclusion
	Bibliography
	Glossary

